×

zbMATH — the first resource for mathematics

Stabilisation and consensus of linear systems with multiple input delays by truncated pseudo-predictor feedback. (English) Zbl 1333.93203
Summary: This paper provides a new approach referred to as pseudo-predictor feedback (PPF) for stabilisation of linear systems with multiple input delays. Differently from the traditional predictor feedback which is from the model reduction appoint of view, the proposed PPF utilises the idea of prediction by generalising the corresponding results for linear systems with a single input delay to the case of multiple input delays. Since the PPF will generally lead to distributed controllers, a truncated pseudo-predictor feedback (TPPF) approach is established instead, which gives finite dimensional controllers. It is shown that the TPPF can compensate arbitrarily large yet bounded delays as long as the open-loop system is only polynomially unstable. The proposed TPPF approach is then used to solve the consensus problems for multi-agent systems characterised by linear systems with multiple input delays. Numerical examples show the effectiveness of the proposed approach.

MSC:
93D15 Stabilization of systems by feedback
93A14 Decentralized systems
93C05 Linear systems in control theory
Software:
DDE-BIFTOOL
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1109/TAC.1982.1103023 · Zbl 0486.93011
[2] DOI: 10.1080/00207721.2012.670305 · Zbl 1307.93075
[3] DOI: 10.1016/j.automatica.2011.02.031 · Zbl 1233.93080
[4] DOI: 10.1080/00207721.2012.724104 · Zbl 1307.93302
[5] DOI: 10.1049/iet-cta.2007.0321
[6] Engelborghs K., Dde-biftool v. 2.00: A matlab package for bifurcation analysis of delay differential equations (TW Reports, p. 61) (2001)
[7] DOI: 10.1007/978-1-4612-0039-0
[8] DOI: 10.1007/978-1-4615-9968-5
[9] DOI: 10.1016/S1874-1029(13)60079-8
[10] DOI: 10.1109/TAC.2009.2038196 · Zbl 1368.93547
[11] DOI: 10.1002/cta.777
[12] DOI: 10.1109/TCSI.2010.2043018
[13] DOI: 10.1016/j.automatica.2013.08.004 · Zbl 1315.93066
[14] DOI: 10.1109/TAC.2007.899007 · Zbl 1366.93581
[15] DOI: 10.1109/TNNLS.2014.2360724
[16] DOI: 10.1109/TNN.2011.2159865
[17] DOI: 10.1109/TAC.1979.1102124 · Zbl 0425.93029
[18] DOI: 10.1080/00207721.2012.745021 · Zbl 1284.93213
[19] DOI: 10.1049/iet-cta.2013.0652
[20] Ren W., Distributed coordination of multi-agent networks (2010)
[21] DOI: 10.1080/00207721.2012.659691 · Zbl 1278.93012
[22] DOI: 10.1049/iet-cta.2012.0379
[23] DOI: 10.1080/00207179.2012.727473 · Zbl 1278.93016
[24] DOI: 10.1080/00207721.2010.517870 · Zbl 1307.93413
[25] DOI: 10.1109/TNN.2011.2163203
[26] DOI: 10.1109/TSMCB.2012.2230441
[27] DOI: 10.1016/j.automatica.2014.10.127 · Zbl 1309.93018
[28] DOI: 10.1016/j.automatica.2014.10.069 · Zbl 1309.93151
[29] DOI: 10.1080/00207721.2012.745028 · Zbl 1284.93257
[30] DOI: 10.1080/00207179.2014.908477 · Zbl 1308.93097
[31] DOI: 10.1016/j.automatica.2014.08.036 · Zbl 1300.93141
[32] DOI: 10.1007/978-3-642-54206-0 · Zbl 1306.93003
[33] DOI: 10.1016/j.automatica.2013.12.006 · Zbl 1364.93044
[34] DOI: 10.1137/090771673 · Zbl 1218.34093
[35] DOI: 10.1016/j.automatica.2012.06.032 · Zbl 1271.93123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.