zbMATH — the first resource for mathematics

Multi-baker map as a model of digital PD control. (English) Zbl 1334.34142

34H15 Stabilization of solutions to ordinary differential equations
93C05 Linear systems in control theory
34C28 Complex behavior and chaotic systems of ordinary differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
Full Text: DOI
[1] Cabrera, J. L. & Milton, J. G. [2004] ” Stick balancing: On-off intermittency and survival times,” Nonlin. Stud.11, 305-317. · Zbl 1059.93100
[2] Chen, Q., Ott, E. & Hurd, L. P. [1991] ” Calculating topological entropies of chaotic dynamical systems,” Phys. Lett. A156, 48-52. genRefLink(16, ’S0218127416500231BIB002’, ’10.1016%252F0375-9601%252891%252990125-R’); genRefLink(128, ’S0218127416500231BIB002’, ’A1991FT05400011’);
[3] Chen, G. & Dong, X. [1998] From Chaos to Order: Methodologies, Perspectives and Applications (World Scientific, Singapore). genRefLink(16, ’S0218127416500231BIB003’, ’10.1142%252F9789812798640’);
[4] Csernák, G. & Stépán, G. [2005] ” Life expectancy of transient microchaotic behaviour,” J. Nonlin. Sci.15, 63-91. genRefLink(16, ’S0218127416500231BIB004’, ’10.1007%252Fs00332-004-0620-2’); genRefLink(128, ’S0218127416500231BIB004’, ’000235835700001’); · Zbl 1123.70318
[5] Csernák, G. & Stépán, G. [2007] ” Life expectancy calculation of transient chaos in the 2D micro-chaos map,” Period. Polytechn.51, 59-62. genRefLink(16, ’S0218127416500231BIB005’, ’10.3311%252Fpp.me.2007-2.03’);
[6] Csernák, G. & Stépán, G. [2010] ” Digital control as source of chaotic behavior,” Int. J. Bifurcation and Chaos20, 1365-1378. [Abstract] genRefLink(128, ’S0218127416500231BIB006’, ’000279882400005’); · Zbl 1193.37041
[7] Csernák, G. & Stépán, G. [2011] ” Sampling and round-off, as sources of chaos in PD-controlled systems,” Proc. 19th Mediterranean Conf. Control and Automation, June 20-23, Corfu.
[8] Csernák, G. & Stépán, G. [2012] ” Disconnected chaotic attractors in digitally controlled linear systems,” Recent Researches in Automatic Control, Systems Science and Communications, Proc. 8th WSEAS Int. Conf. Dynamical Systems and Control (WSEAS Press), pp. 97-102.
[9] Csernák, G. & Stépán, G. [2013] ” The state-space model of micro-chaos,” Proc. 2013 Int. Conf. Systems, Control, Signal Processing and Informatics, Rhodes, pp. 420-425.
[10] Delchamps, F. D. [1990] ” Stabilizing a linear system with quantized state feedback,” IEEE Trans. Autom. Contr.35, 916-924. genRefLink(16, ’S0218127416500231BIB010’, ’10.1109%252F9.58500’); genRefLink(128, ’S0218127416500231BIB010’, ’A1990DR64900005’); · Zbl 0719.93067
[11] Enikov, E. & Stépán, G. [1998] ” Micro-chaotic motion of digitally controlled machines,” J. Vibr. Contr.4, 427-443. genRefLink(16, ’S0218127416500231BIB011’, ’10.1177%252F107754639800400405’); genRefLink(128, ’S0218127416500231BIB011’, ’000074512700005’); · Zbl 0949.70520
[12] Farmer, J. D., Ott, E. & Yorke, J. A. [1983] ” The dimension of chaotic attractors,” Physica D7, 153-180. genRefLink(16, ’S0218127416500231BIB012’, ’10.1016%252F0167-2789%252883%252990125-2’); genRefLink(128, ’S0218127416500231BIB012’, ’A1983RH39400016’); · Zbl 0561.58032
[13] Garay, B. M., Csikja, R. & Tóth, J. [2008] ” Some chaotic properties of the beta-hysteresis transformation,” Proc. 2008 Int. Symp. Nonlinear Theory and Its Applications, Budapest, Hungary, September 7-10, pp. 191-194.
[14] Haller, G. & Stépán, G. [1996] ” Micro-chaos in digital control,” J. Nonlin. Sci.6, 415-448. genRefLink(16, ’S0218127416500231BIB014’, ’10.1007%252FBF02440161’); genRefLink(128, ’S0218127416500231BIB014’, ’A1996VK68900002’); · Zbl 0863.93050
[15] Hsu, C. S. [1987] Cell-to-Cell Mapping. A Method of Global Analysis for Nonlinear Systems, Applied Mathematical Sciences, Vol. 64 (Springer-Verlag, NY). genRefLink(16, ’S0218127416500231BIB015’, ’10.1007%252F978-1-4757-3892-6’); · Zbl 0632.58002
[16] Kuo, B. C. [1977] Digital Control Systems (SRL Publishing, Champaign, IL, USA).
[17] Lakshmikantham, V., Leela, S. & Martynyuk, A. A. [1990] Practical Stability of Nonlinear Systems (World Scientific, Singapore). [Abstract] · Zbl 0753.34037
[18] Milton, J. G. & Bélair, J. [1990] ” Chaos, noise and extinction in models of population growth,” Theoret. Popul. Biol.37(2). genRefLink(16, ’S0218127416500231BIB018’, ’10.1016%252F0040-5809%252890%252990040-3’); genRefLink(128, ’S0218127416500231BIB018’, ’A1990DA37800001’);
[19] Trefethen, L. N. & Embree, M. [2005] Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, USA). · Zbl 1085.15009
[20] Widrow, B. & Kollár, I. [2008] Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications (Cambridge University Press, Cambridge, UK), 778 pp. genRefLink(16, ’S0218127416500231BIB020’, ’10.1017%252FCBO9780511754661’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.