×

The affine particle-in-cell method. (English) Zbl 1334.68253


MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
65D17 Computer-aided design (modeling of curves and surfaces)
68U20 Simulation (MSC2010)
76B07 Free-surface potential flows for incompressible inviscid fluids
76M27 Visualization algorithms applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ando, R., and Tsuruno, R. 2011. A particle-based method for preserving fluid sheets. InProc ACM SIGGRAPH/Eurographics Symp Comp Anim, SCA ’11, 7–16.
[2] Ando, R., Thurey, N., and Tsuruno, R. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles.IEEE Trans Vis Comp Graph 18, 8, 1202–1214.
[3] Ando, R., Thurey, N., and Wojtan, C. 2013. Highly adaptive liquid simulations on tetrahedral meshes.ACM Trans Graph 32, 4, 103:1–103:10.
[4] Bargteil, A., Wojtan, C., Hodgins, J., and Turk, G. 2007. A finite element method for animating large viscoplastic flow.ACM Trans Graph 26, 3.
[5] Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids.Proc ACM SIGGRAPH/ Eurograph Symp Comp Anim, 219–228.
[6] Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling.ACM Trans Graph 26, 3. · Zbl 1392.74035
[7] Boyd, L., and Bridson, R. 2012. Multiflip for energetic two-phase fluid simulation.ACM Trans Graph 31, 2, 16:1–16:12.
[8] Brackbill, J., and Ruppel, H. 1986. Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions.J Comp Phys 65, 314–343. · Zbl 0592.76090
[9] Brackbill, J., Kothe, D., and Ruppel, H. 1988. Flip: A low-dissipation, pic method for fluid flow.Comp Phys Comm 48, 25–38.
[10] Brackbill, J. 1988. The ringing instability in particle-in-cell calculations of low-speed flow.J Comp Phys 75, 2, 469–492. · Zbl 0638.76068
[11] Bridson, R. 2008.Fluid simulation for computer graphics.Taylor & Francis.
[12] Chentanez, N., and Muller, M. 2010. Real-time simulation of large bodies of water with small scale details. InProc ACM SIGGRAPH/Eurograph Symp Comp Anim, SCA ’10, 197–206.
[13] Chentanez, N., and Muller, M. 2011. Real-time eulerian water simulation using a restricted tall cell grid.ACM Trans Graph 30, 4, 82:1–82:10.
[14] Chentanez, N., and Muller, M. 2014. Coupling 3d eulerian, height field and particle methods for the simulation of large scale liquid phenomena. InProc ACM SIGGRAPH/Eurograph Symp Comp Anim, SCA ’14.
[15] Cornelis, J., Ihmsen, M., Peer, A., and Teschner, M. 2014. Iisph-flip for incompressible fluids.Comp Graph Forum 33, 2, 255–262.
[16] Edwards, E., and Bridson, R. 2012. A high-order accurate particle-in-cell method.Int J Numer Meth Eng 90, 1073–1088. · Zbl 1242.76268
[17] Edwards, E., and Bridson, R. 2014. Detailed water with coarse grids: combining surface meshes and adaptive discontinuous galerkin.ACM Trans Graph 33, 4, 136:1–136:9. · Zbl 06863241
[18] Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces.ACM Trans Graph 21, 3, 736–744.
[19] Feldman, B., O’Brien, J., and Arikan, O. 2003. Animating suspended particle explosions.SIGGRAPH ’03 22, 3, 708–715. · Zbl 1205.68464
[20] Foster, N., and Metaxas, D. 1996. Realistic animation of liquids.Graph Mod Imag Proc 58, 471–483.
[21] Gao, Y., li, C., Hu, S., and Barsky, B. 2009. Simulating gaseous fluids with low and high speeds.Comp Graph Forum 28, 28, 1845–1852.
[22] Gerszewski, D., and Bargteil, A. 2013. Physics-based animation of large-scale splashing liquids.ACM Trans Graph 32, 6, 185:1–185:6.
[23] Harlow, F., and Welch, E. 1965. Numerical calculation of time dependent viscous flow of fluid with a free surface.Phys Fluid 8, 12, 2182–2189. · Zbl 1180.76043
[24] Harlow, F. 1964. The particle-in-cell method for numerical solution of problems in fluid dynamics.Meth Comp Phys 3, 319–343.
[25] Hong, J., Lee, H., Yoon, J., and Kim, C. 2008. Bubbles alive.ACM Trans Graph 27, 3, 48:1–48:4.
[26] Hong, W., House, D., and Keyser, J. 2008. Adaptive particles for incompressible fluid simulation.Vis Comp 24, 7, 535–543.
[27] Hong, W., House, D., and Keyser, J. 2009. An adaptive sampling approach to incompressible particle-based fluid.Theory Pract Comp Graph, 69–76.
[28] Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2013. Implicit incompressible sph.IEEE Trans Vis Comp Graph 20, 3, 426–435.
[29] Kim, J., Cha, D., Chang, B., Koo, B., and Ihm, I. 2006. Practical animation of turbulent splashing water. InProc ACM SIGGRAPH/Eurograph Symp Comp Anim, SCA ’06, 335–344.
[30] Lee, H., Hong, J., and Kim, C. 2009. Interchangeable sph and level set method in multiphase fluids.Vis Comp 25, 5, 713–718.
[31] Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation.IEEE Trans Vis Comp Graph 14, 797–804.
[32] Love, E., and Sulsky, D. 2006. An unconditionally stable, energy-momentum consistent implementation of the the material point method.Comp Meth App Mech Eng 195, 3903–3925. · Zbl 1118.74054
[33] Mihalef, V., Metaxas, D., and Sussman, M. 2007. Textured liquids based on the marker level set.Comp Graph Forum, 457–466.
[34] Muller, K., Fedosov, D., and Gompper, G. 2015. Smoothed dissipative particle dynamics with angular momentum conservation.J Comp Phys 281, 301–315. · Zbl 1351.76244
[35] Narain, R., Golas, A., and Lin, M. 2013. Free-flowing granular materials with two-way solid coupling.ACM Trans Graph 29, 6, 173:1–173:10.
[36] Patkar, S., Aanjaneya, M., Karpman, D., and Fedkiw, R. 2013. A hybrid lagrangian-eulerian formulation for bubble generation and dynamics. InProc ACM SIGGRAPH/Eurograp Symp Comp Anim, SCA ’13, 105–114.
[37] Raveendran, K., Wojtan, C., and Turk, G. 2011. Hybrid sph. InProc 2011 ACM SIGGRAPH/Eurograp Symp Comp Anim, SCA ’11, 33–42.
[38] Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. InProc ACM SIGGRAPH/Eurograph Symp Comp Anim, 81–90.
[39] Sin, F., Bargteil, A., and Hodgins, J. 2009. A point-based method for animating incompressible flow. InProc ACM SIGGRAPH/Eurograph Symp Comp Anim, 247–255.
[40] Song, O., Kim, D., and Ko, H. 2009. Derivative particles for simulating detailed movements of fluids.IEEE Trans Vis Comp Graph, 247–255.
[41] Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation.ACM Trans Graph 32, 4, 102:1–102:10. · Zbl 1305.68280
[42] Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phasechange and varied materials.ACM Trans Graph 33, 4, 138:1–138:11. · Zbl 1396.65064
[43] Sulsky, D., Zhou, S., and Schreyer, H. 1995. Application of a pic method to solid mechanics.Comp Phys Comm 87, 1, 236–252. · Zbl 0918.73334
[44] Um, K., Baek, S., and Han, J. 2014. Advanced hybrid particle-grid method with sub-grid particle correction.Comp Graph Forum 33, 209–218.
[45] Yabe, T., Xiao, F., and Utsumi, T. 2001. The constrained interpolation profile method for multiphase analysis.J Comp Phys 169, 556–593. · Zbl 1047.76104
[46] Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid.ACM Trans Graph 24, 3, 965–972.
[47] Zhu, B., Yang, X., and Fan, Y. 2010. Creating and preserving vortical details in sph fluid.Comp Graph Forum 29, 7, 2207–2214.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.