# zbMATH — the first resource for mathematics

Imaginary geometry. I: Interacting SLEs. (English) Zbl 1336.60162
Summary: Fix constants $$\chi >0$$ and $$\theta \in [0,2\pi )$$, and let $$h$$ be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field $$e^{i(h/\chi +\theta )}$$ starting at a fixed boundary point of the domain. Letting $$\theta$$ vary, one obtains a family of curves that look locally like $$\mathrm{SLE}_\kappa$$ processes with $$\kappa \in (0,4)$$ (where $$\chi = \tfrac{2}{\sqrt{\kappa }} -\tfrac{ \sqrt{\kappa }}{2}$$), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when $$h$$ is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called counterflow lines ($$\mathrm {SLE}_{16/\kappa}$$) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about SLE. For example, we prove that $$\mathrm{SLE}_\kappa (\rho )$$ processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general $$\mathrm{SLE}_{16/\kappa }(\rho )$$ processes.

##### MSC:
 60J67 Stochastic (Schramm-)Loewner evolution (SLE) 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60G60 Random fields 60G15 Gaussian processes
##### Keywords:
Schramm-Loewner evolution; Gaussian free field
Full Text:
##### References:
  Ben Arous, G; Deuschel, J-D, The construction of the $$(d+1)$$-dimensional Gaussian droplet, Commun. Math. Phys., 179, 467-488, (1996) · Zbl 0858.60096  Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1), 1-38 (2006). arXiv:math/0605035 · Zbl 1117.60086  Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515-580 (2012). arXiv:0910.2045 [math] · Zbl 1257.82020  Duplantier, B; Sheffield, S, Liouville quantum gravity and KPZ, Invent. Math., 185, 333-393, (2011) · Zbl 1226.81241  Dubédat, J, Duality of schramm-Loewner evolutions, Ann. Sci. Éc. Norm. Supér. (4), 42, 697-724, (2009) · Zbl 1205.60147  Dubédat, J, SLE and the free field: partition functions and couplings, J. Am. Math. Soc., 22, 995-1054, (2009) · Zbl 1204.60079  Garban, C; Rohde, S; Schramm, O, Continuity of the SLE trace in simply connected domains, Isr. J. Math., 187, 23-36, (2012) · Zbl 1261.60079  Hagendorf, C; Bernard, D; Bauer, M, The Gaussian free field and $${{\rm SLE}}_4$$ on doubly connected domains, J. Stat. Phys., 140, 1-26, (2010) · Zbl 1193.82027  Hu, X; Miller, J; Peres, Y, Thick points of the Gaussian free field, Ann. Probab., 38, 896-926, (2010) · Zbl 1201.60047  Izyurov, K; Kytölä, K, Hadamard’s formula and couplings of SLEs with free field, Probab. Theory Relat. Fields, 155, 35-69, (2013) · Zbl 1269.60067  Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128-1137 (2001). arXiv:math/0002027 · Zbl 1034.82021  Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. In: Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991) · Zbl 0734.60060  Kemppainen, A., Sheffield, S., Schramm, S.: TBD  Lawler, G.F.: Conformally invariant processes in the plane. In: Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005) · Zbl 1074.60002  Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917-955 (2003). arXiv:math/0209343 · Zbl 1030.60096  Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939-995 (2004). arXiv:math/0112234 · Zbl 1126.82011  Miller, J.: Universality for SLE(4) (2010). arXiv:1010.1356 [math] · Zbl 1193.82027  Miller, J, Fluctuations for the Ginzburg-Landau $$∇ ϕ$$ interface model on a bounded domain, Commun. Math. Phys., 308, 591-639, (2011) · Zbl 1237.82030  Makarov, N., Smirnov, S.: Off-critical lattice models and massive SLEs. In: XVIth International Congress on Mathematical Physics, pp. 362-371. World Sci. Publ., Hackensack (2010). arXiv:0909.5377 [math] · Zbl 1205.82055  Miller, J., Sheffield, S.: Imaginary geometry II: reversibility of $$\text{ SLE }_κ (ρ _1;ρ _2)$$ for $$κ ∈ (0,4)$$. To appear in Annal. Probab. (2012). arXiv:1201.1497 [math] · Zbl 1170.60008  Miller, J., Sheffield, S.: Imaginary geometry III: reversibility of $$\text{ SLE }_κ$$ for $$κ ∈ (4,8)$$. To appear in Annal. Math. (2012). arXiv:1201.1498 [math] · Zbl 1200.60071  Miller, J., Sheffield, S.: Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees (2013). arXiv:1302.4738 [math] · Zbl 1378.60108  Naddaf, A; Spencer, T, On homogenization and scaling limit of some gradient perturbations of a massless free field, Commun. Math. Phys., 183, 55-84, (1997) · Zbl 0871.35010  Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. (2) 161(2), 883-924 (2005). arXiv:math/0106036 · Zbl 1081.60069  Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN (2) Art. ID rnm006, 33 (2007). arXiv:math/0606663 · Zbl 1261.60079  Revuz, D., Yor, M.: Continuous martingales and Brownian motion. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. Springer, Berlin (1999) · Zbl 0917.60006  Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221-288 (2000). arXiv:math/9904022 · Zbl 0968.60093  Sheffield, S.: Local sets of the Gaussian free field: slides and audio. http://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield1/. http://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield2/. http://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield3/  Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3-4), 521-541 (2007). arXiv:math/0312099 · Zbl 1132.60072  Sheffield, S, Exploration trees and conformal loop ensembles, Duke Math. J., 147, 79-129, (2009) · Zbl 1170.60008  Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. To appear in Annal. Probab. (2010). arXiv:1012.4797 [math] · Zbl 1388.60144  Sheffield, S.: Quantum gravity and inventory accumulation. To appear in Annal. Probab. (2011). arXiv:1108.2241 [math]  Smirnov, S, Critical percolation in the plane: conformal invariance, cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., 333, 239-244, (2001) · Zbl 0985.60090  Smirnov, S, Conformal invariance in random cluster models. I. holomorphic fermions in the Ising model, Ann. Math. (2), 172, 1435-1467, (2010) · Zbl 1200.82011  Schramm, O; Sheffield, S, Harmonic explorer and its convergence to $${\text{ SLE }}_4$$, Ann. Probab., 33, 2127-2148, (2005) · Zbl 1095.60007  Schramm, O; Sheffield, S, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math., 202, 21-137, (2009) · Zbl 1210.60051  Schramm, O; Sheffield, S, A contour line of the continuum Gaussian free field, Probab. Theory Relat. Fields, 157, 47-80, (2013) · Zbl 1331.60090  Werner, W.: Random planar curves and Schramm-Loewner evolutions. In: Lectures on Probability Theory and Statistics. Lecture Notes in Math., vol. 1840, pp. 107-195. Springer, Berlin (2004). arXiv:math/0303354 · Zbl 1057.60078  Zhan, D, Duality of chordal SLE, Invent. Math., 174, 309-353, (2008) · Zbl 1158.60047  Zhan, D, Duality of chordal SLE, II, Ann. Inst. Henri Poincaré Probab. Stat., 46, 740-759, (2010) · Zbl 1200.60071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.