\(n\)-way metrics. (English) Zbl 1337.54019

Summary: We study a family of \(n\)-way metrics that generalize the usual two-way metric. The \(n\)-way metrics are totally symmetric maps from \(E^n\) into \(\mathbb{R}_{\geq 0}\). The three-way metrics introduced by S. Joly and G. Le Calvé [J. Classif. 12, No. 2, 191–205 (1995; Zbl 0836.62046)] and W. J. Heiser and M. Bennani [J. Math. Psychol. 41, No. 2, 189–206 (1997; Zbl 1072.91639)] and the \(n\)-way metrics studied in [M. M. Deza and I. G. Rosenberg, Eur. J. Comb. 21, No. 6, 797–806 (2000; Zbl 0988.54029)] belong to this family. It is shown how the \(n\)-way metrics and \(n\)-way distance measures are related to \((n-1)\)-way metrics, respectively, \((n-1)\)-way distance measures.


54E35 Metric spaces, metrizability
62H30 Classification and discrimination; cluster analysis (statistical aspects)
Full Text: DOI


[1] BENNANI-DOSSE, M. (1993), Analyses Métriques á Trois Voies, PhD Dissertation, Université de Haute Bretagne Rennes II, France.
[2] CHEPOI, V., and FICHET, B. (2007), ”A Note on Three-way Dissimilarities and Their Relationship With Two-way Dissimilarities,” in Selected Contributions in Data Analysis and Classification, eds. P. Brito, P. Bertrand, G. Cucumel, and F. De Carvalho, Berlin: Springer, pp. 465–476. · Zbl 1170.62337
[3] COX, T.F., COX, M.A.A. and BRANCO, J.A. (1991), ”Multidimensional Scaling of n-Tuples,” British Journal of Mathematical and Statistical Psychology, 44, 195–206. · Zbl 0726.92031
[4] DE ROOIJ, M. (2001), Distance Models for Transition Frequency Data, PhD Dissertation, Leiden University, The Netherlands.
[5] DE ROOIJ, M., and GOWER, J. C. (2003), ”The Geometry of Triadic Distances,” Journal of Classification, 20, 181–220. · Zbl 1112.62328
[6] DEZA, E., and DEZA, M.-M. (2006), Dictionary of Distances, Amsterdam: Elsevier. · Zbl 1146.05041
[7] DEZA, M.-M., and ROSENBERG, I.G. (2000), ”n-Semimetrics.” European Journal of Combinatorics, 21, 797–806. · Zbl 0988.54029
[8] DEZA, M.-M., and ROSENBERG, I.G. (2005), ”Small Cones of m-Hemimetrics,” Discrete Mathematics, 291, 81–97. · Zbl 1072.52010
[9] DIATTA, J. (2006), ”Description-meet Compatible Multiway Dissimilarities,” Discrete Applied Mathematics, 154, 493–507. · Zbl 1159.62355
[10] DIATTA, J. (2007), ”Galois Closed Entity Sets and k-Balls of Quasi-ultrametric Multi-way Dissimilarities,” Advances in Data Analysis and Classification, 1, 53–65. · Zbl 1133.62335
[11] GOWER, J.C., and DE ROOIJ, M. (2003), ”A Comparison of the Multidimensional Scaling of Triadic and Dyadic Distances,” Journal of Classification, 20, 115–136. · Zbl 1113.91334
[12] GOWER, J.C., and LEGENDRE, P. (1986), ”Metric and Euclidean Properties of Dissimilarity Coefficients,” Journal of Classification, 3, 5–48. · Zbl 0592.62048
[13] HEISER, W. J., and BENNANI, M. (1997), ”Triadic Distance Models: Axiomatization and Least Squares Representation,” Journal of Mathematical Psychology, 41, 189–206. · Zbl 1072.91639
[14] JACCARD, P. (1912), ”The Distribution of the Flora in the Alpine Zone,” The New Phytologist, 11, 37–50.
[15] JOLY, S., and LE CALVÉ, G. (1995), ”Three-way Distances,” Journal of Classification, 12, 191–205. · Zbl 0836.62046
[16] NAKAYAMA, A. (2005), ”A Multidimensional Scaling Model for Three-way Data Analysis,” Behaviormetrika, 32, 95–110. · Zbl 1122.91357
[17] RUSSEL, P.F., and RAO, T.R. (1940), ”On Habitat and Association of Species of Anopheline Larvae in South-Eastern Madras,” Journal of Malaria Institute India, 3, 153–178.
[18] SOKAL, R.R., and MICHENER, C.D. (1958), ”A Statistical Method for Evaluating Systematic Relationships”, University of Kansas Science Bulletin, 38, 1409–1438.
[19] WARRENS, M.J. (2008a), ”On Multi-way Metricity, Minimality and Diagonal Planes,” Advances in Data Analysis and Classification, 2, 109–119. · Zbl 1306.62037
[20] WARRENS, M.J. (2008b), ”On the Indeterminacy of Resemblance Measures for (Presence/Absence) Data,” Journal of Classification, 25, 125-1-36. · Zbl 1260.62052
[21] WARRENS, M.J. (2008c), ”Bounds of Resemblance Measures for Binary (Presence/Absence) Variables,” Journal of Classification, 25, 195–208. · Zbl 1276.62044
[22] WARRENS, M.J. (2008d), ”On Association Coefficients for 2 {\(\times\)} 2 Tables and Properties That Do not Depend on the Marginal Distributions,” Psychometrika, 73, 777-7-89. · Zbl 1284.62762
[23] WARRENS, M.J. (2008e), ”On Similarity Coefficients for 2 {\(\times\)} 2 Tables and Correction for Chance,” Psychometrika, 73, 487–502. · Zbl 1301.62125
[24] WARRENS, M.J. (2009a), ”k-Adic Similarity Coefficients for Binary (Presence/Absence) Data,” Journal of Classification, 26, 227–245. · Zbl 1337.62142
[25] WARRENS, M.J. (2009b), ”On Robinsonian Dissimilarities, the Consecutive Ones Property and Latent Variable Models,” Advances in Data Analysis and Classification, 3, 169–184. · Zbl 1284.62317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.