×

A nonconforming high-order method for the Biot problem on general meshes. (English) Zbl 1337.76042


MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Software:

PolyMesher; Eigen
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] S. I. Barry and G. N. Mercer, Exact solution for two-dimensional time-dependent flow and deformation within a poroelastic medium, Trans. ASME J. Appl. Mech., 66 (1999), pp. 536–540.
[2] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231 (2012), pp. 45–65. · Zbl 1457.65178
[3] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, 1997, pp. 99–109.
[4] L. Beira͂o da Veiga, F. Brezzi, and L. D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51 (2013), pp. 794–812, http://dx.doi.org/10.1137/120874746. · Zbl 1268.74010
[5] M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), pp. 155–164. · JFM 67.0837.01
[6] M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), pp. 182–185. · Zbl 0067.23603
[7] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Berlin, Heidelberg, 2013. · Zbl 1277.65092
[8] S. C. Brenner, Korn’s inequalities for piecewise \(H^1\) vector fields, Math. Comp., 73 (2004), pp. 1067–1087. · Zbl 1055.65118
[9] A. Cangiani, E. H. Georgoulis, and P. Houston, \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24 (2014), pp. 2009–2041, http://dx.doi.org/10.1142/S0218202514500146. · Zbl 1298.65167
[10] B. Cockburn, D. A. Di Pietro, and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, M2AN Math. Model. Numer. Anal., 50 (2016), pp. 635–650, http://dx.doi.org/10.1051/m2an/2015051. · Zbl 1341.65045
[11] D. A. Di Pietro and J. Droniou, A hybrid high-order method for Leray-Lions elliptic equations on general meshes, Math. Comp., to appear. · Zbl 1364.65224
[12] D. A. Di Pietro, J. Droniou, and A. Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes, SIAM J. Numer. Anal., 53 (2015), pp. 2135–2157, http://dx.doi.org/10.1137/140993971. · Zbl 1457.65194
[13] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. · Zbl 1231.65209
[14] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg., 283 (2015), pp. 1–21, http://dx.doi.org/10.1016/j.cma.2014.09.009. · Zbl 1423.74876
[15] D. A. Di Pietro and A. Ern, A family of arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes, IMA J. Numer. Anal., to appear; available online from http://hal.archives-ouvertes.fr/hal-00918482.
[16] D. A. Di Pietro, A. Ern, and J.-L. Guermond, Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection, SIAM J. Numer. Anal., 46 (2008), pp. 805–831, http://dx.doi.org/10.1137/060676106. · Zbl 1165.49032
[17] D. A. Di Pietro, A. Ern, and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math., 14 (2014), pp. 461–472. · Zbl 1304.65248
[18] D. A. Di Pietro and S. Lemaire, An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Math. Comp., 84 (2015), pp. 1–31. · Zbl 1308.74145
[19] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp., 34 (1980), pp. 441–463. · Zbl 0423.65009
[20] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004. · Zbl 1059.65103
[21] G. Guennebaud and B. Jacob, Eigen 3, http://eigen.tuxfamily.org, 2010.
[22] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex Applications V, R. Eymard and J.-M. Hérard, eds., ISTE, London; John Wiley & Sons, Hoboken, NJ, 2008, pp. 659–692. · Zbl 1422.65314
[23] J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), pp. 353–384, http://dx.doi.org/10.1137/0727022. · Zbl 0694.76014
[24] R. W. Lewis and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley Ser. Numer. Methods Engrg., John Wiley, New York, 1998. · Zbl 0935.74004
[25] M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot’s consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), pp. 359–382. · Zbl 0760.73068
[26] M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot’s consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), pp. 645–667. · Zbl 0791.76047
[27] A. Naumovich, On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains, Comput. Methods App. Math., 6 (2006), pp. 306–325. · Zbl 1100.74060
[28] P. J. Phillips, Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results, Ph.D. thesis, University of Texas at Austin, Austin, TX, 2005.
[29] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case, Comput. Geosci., 11 (2007), pp. 131–144. · Zbl 1117.74015
[30] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II. The discrete-in-time case, Comput. Geosci., 11 (2007), pp. 145–158. · Zbl 1117.74016
[31] P. J. Phillips and M. F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12 (2008), pp. 417–435. · Zbl 1155.74048
[32] C. Rodrigo, F. J. Gaspar, X. Hu, and L. T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg., 298 (2016), pp. 183–204.
[33] R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), pp. 310–340. · Zbl 0979.74018
[34] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, \textupPolyMesher: A general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45 (2012), pp. 309–328, http://dx.doi.org/10.1007/s00158-011-0706-z. · Zbl 1274.74401
[35] K. Terzaghi, Theoretical Soil Mechanics, Wiley, New York, 1943.
[36] M. F. Wheeler, G. Xue, and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity, Comput. Geosci., 18 (2014), pp. 57–75. · Zbl 1395.65093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.