Moradi, Somayeh; Khosh-Ahang, Fahimeh Expansion of a simplicial complex. (English) Zbl 1338.13041 J. Algebra Appl. 15, No. 1, Article ID 1650004, 15 p. (2016). Let \(\Delta\) be a simplicial complex. There have been a number of work investigating how combinatorial modification of \(\Delta\) affects algebraic properties and invariants of its Stanley-Reisner ideal and ring. For instance, [J. Biermann et al., J. Commut. Algebra 7, No. 3, 337–352 (2015; Zbl 1328.05207)] and references therein. Motivated by this problem, the paper under review introduces a notion of expansion for simplicial complexes. This notion is the higher dimensional analog of the well-known construction for graphs (where a simplicial complex is viewed as a hypergraphs with edges being its facets).The main results of the paper show that the vertex decomposability and shellability of \(\Delta\) are preserved after an expansion. Furthermore, the projective dimension and the regularity of (the Stanley-Reisner ring of) expansions of \(\Delta\) are given in terms of those of \(\Delta\). Reviewer: Tai Ha (New Orleans) Cited in 1 ReviewCited in 10 Documents MSC: 13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes 13D05 Homological dimension and commutative rings 13C14 Cohen-Macaulay modules Keywords:Cohen-Macaulay; edge ideal; expansion; projective dimension; regularity; shellable; vertex decomposable Citations:Zbl 1328.05207 Software:Macaulay2 PDF BibTeX XML Cite \textit{S. Moradi} and \textit{F. Khosh-Ahang}, J. Algebra Appl. 15, No. 1, Article ID 1650004, 15 p. (2016; Zbl 1338.13041) Full Text: DOI arXiv OpenURL References: [1] Biermann J., Electron. J. Combin. 20 pp 15– (2013) [2] DOI: 10.1090/S0002-9947-96-01534-6 · Zbl 0857.05102 [3] DOI: 10.1090/S0002-9947-97-01838-2 · Zbl 0886.05126 [4] Bruns W., Cambridge Studies in Advanced Mathematics 39, in: Cohen–Macaulay Rings (1993) [5] DOI: 10.1137/100818170 · Zbl 1245.05138 [6] DOI: 10.1016/S0022-4049(97)00097-2 · Zbl 0941.13016 [7] DOI: 10.1016/j.jpaa.2003.11.014 · Zbl 1045.05029 [8] DOI: 10.1016/j.jcta.2007.06.004 · Zbl 1142.13021 [9] DOI: 10.1016/j.jalgebra.2010.10.025 · Zbl 1227.13016 [10] DOI: 10.1090/S0002-9939-07-08841-7 · Zbl 1128.13013 [11] DOI: 10.1216/JCA-2009-1-3-463 · Zbl 1187.13018 [12] DOI: 10.1007/s10801-007-0079-y · Zbl 1147.05051 [13] DOI: 10.1016/j.ejc.2003.12.008 · Zbl 1062.05075 [14] DOI: 10.1090/S0002-9939-2014-11906-X · Zbl 1297.13019 [15] DOI: 10.7146/math.scand.a-15130 · Zbl 1214.05143 [16] S. Morey and R. H. Villarreal, Progress in Commutative Algebra, Combinatorics and Homology 1, eds. C. Francisco (De Gruyter, Berlin, 2012) pp. 85–126. · Zbl 1246.13001 [17] DOI: 10.1016/0001-8708(76)90114-6 · Zbl 0345.13017 [18] Sharifan L., Le Matematiche (Catania) 63 pp 257– (2008) [19] Stanley R. P., Progress in Mathematics 41, in: Combinatorics and Commutative Algebra (1996) [20] DOI: 10.1007/s00013-009-0049-9 · Zbl 1184.13062 [21] DOI: 10.1016/j.jcta.2007.11.001 · Zbl 1154.05054 [22] DOI: 10.1007/BF02568497 · Zbl 0737.13003 [23] Villarreal R. H., Monographs and Textbooks in Pure and Applied Mathematics 238, in: Monomial Algebras (2001) [24] DOI: 10.1090/S0002-9939-09-09981-X · Zbl 1180.13031 [25] DOI: 10.1081/AGB-120037222 · Zbl 1089.13014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.