×

zbMATH — the first resource for mathematics

A helical Cauchy-Born rule for special Cosserat rod modeling of nano and continuum rods. (English) Zbl 1338.74012
Summary: We present a novel scheme to derive nonlinearly elastic constitutive laws for special Cosserat rod modeling of nano and continuum rods. We first construct a 6-parameter (corresponding to the six strains in the theory of special Cosserat rods) family of helical rod configurations subjected to uniform strain along their arc-length. The uniformity in strain then enables us to deduce the constitutive laws by just solving the warping of the helical rod’s cross-section (smallest repeating cell for nanorods) but under certain constraints. The constraints are shown to be critical in the absence of which, the 6-parameter family reduces to a well known 2-parameter family of uniform helical equilibria. An explicit formula for the 6-parameter helical map is derived which maps atoms in the repeating cell of a nanorod to their images for the purpose of repeating cell energy minimization. A scheme for the passage from nano to continuum scale is also presented to derive the constitutive laws of a continuum rod via atomistic calculations of nanorods. The bending, twisting, stretching and shearing stiffnesses of diamond nanorods and carbon nanotubes are computed to demonstrate our theory. We show that our scheme is more general and accurate than existing schemes allowing us to deduce shearing stiffness and several coupling stiffnesses of a nanorod for the first time.

MSC:
74B20 Nonlinear elasticity
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74Q15 Effective constitutive equations in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995) · Zbl 0820.73002
[2] Arroyo, M.; Belytschko, T., An atomistic-based finite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids, 50, 1941-1977, (2002) · Zbl 1006.74061
[3] Bozec, L.; Heijden, G.; Horton, M., Collagen fibrils: nanoscale ropes, Biophys. J., 92, 70-75, (2007)
[4] Brenner, D.W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, 9458, (1990)
[5] Buehler, M.; Kong, Y.; Gao, H., Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading, J. Eng. Mater. Technol., 126, 245-249, (2004)
[6] Cai, W.; Fong, W.; Elsen, E.; Weinberger, C.R., Torsion and bending periodic boundary conditions for modeling the intrinsic strength of nanowires, J. Mech. Phys. Solids, 56, 3242-3258, (2008) · Zbl 1176.74020
[7] Chandraseker, K.; Mukherjee, S., Coupling of extension and twist in single-walled carbon nanotubes, J. Appl. Mech., 73, 315-326, (2006) · Zbl 1111.74348
[8] Chandraseker, K.; Mukherjee, S.; Paci, J.T.; Schatz, G.C., An atomistic-continuum Cosserat rod model of carbon nanotubes, J. Mech. Phys. Solids, 57, 932-958, (2009)
[9] Chouaieb, N.; Maddocks, J.H., Kirchoff ’s problem of helical equilibria of uniform rods, J. Elast., 77, 221-247, (2004) · Zbl 1071.74031
[10] Cowper, G.R., The shear coefficient in timoshenko’s beam theory, J. Appl. Mech., 33, 335-340, (1966) · Zbl 0151.37901
[11] Ericksen, J.L., Special topics in elastostatics, Adv. Appl. Mech., 17, 189-244, (1977) · Zbl 0475.73017
[12] Ericksen, J.L., On the Cauchy-Born rule, Math. Mech. Solids, 13, 199-220, (2008) · Zbl 1161.74305
[13] Fang, C.; Kumar, A.; Mukherjee, S., Finite element analysis of carbon nanotubes based on a rod model including in-plane cross-sectional deformation, Int. J. Solids Struct., 50, 49-56, (2013)
[14] Friesecke, G.; James, R.D., A scheme for the passage from atomic to continuum theory for thin film, nanotubes and nanorods, J. Mech. Phys. Solids, 48, 1519-1540, (2000) · Zbl 0984.74009
[15] Gupta, P., Kumar, A.: Effect of material nonlinearity on Euler buckling of nanorods and nanotubes (2016, in preparation)
[16] Goriely, A.; Tabor, M., Spontaneous helix hand reversal and tendril perversion in climbing plants, Phys. Rev. Lett., 80, 1564, (1998)
[17] Gould, T.; Burton, D.A., A Cosserat rod model with microstructure, New J. Phys., 8, 137(1-17), (2006)
[18] Goyal, S.; Perkins, C.; Lee, C.L., Nonlinear dynamics and loop formation in kirchoff rods with implications to the mechanics of DNA and cables, J. Comp. Physiol., 209, 371-389, (2005) · Zbl 1329.74154
[19] Hakobyan, Y.; Tadmor, E.B.; James, R.D., Objective quasicontinuum approach for rod problems, Phys. Rev. B, 86, (2012)
[20] Healey, T.J., Material symmetry and chirality in nonlinearly elastic rods, Math. Mech. Solids, 7, 405-420, (2002) · Zbl 1090.74610
[21] Hutchinson, J.R., Shear coefficients for Timoshenko beam theory, J. Appl. Mech., 68, 87-92, (2001) · Zbl 1110.74489
[22] James, R.D., Objective structures, J. Mech. Phys. Solids, 54, 2354-2390, (2006) · Zbl 1120.74312
[23] Klein, C.A.; Cardinale, G.F., Young’s modulus and poisson’s ratio of CVD diamond, Diam. Relat. Mater., 2, 918-923, (1993)
[24] Kumar, A.; Healey, T.J., A generalized computational approach to stability of static equilibria of nonlinearly elastic rods in the presence of constraints, Comput. Methods Appl. Mech. Eng., 199, 1805-1815, (2010) · Zbl 1231.74484
[25] Kumar, A.; Mukherjee, S., A geometrically exact rod model including in-plane cross-sectional deformation, J. Appl. Mech., 78, (2011)
[26] Kumar, A.; Mukherjee, S.; Paci, J.T.; Chandraseker, K.; Schatz, G.C., A rod model for three dimensional deformations of single-walled carbon nanotubes, Int. J. Solids Struct., 48, 2849-2858, (2011)
[27] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (2000)
[28] Manning, R.S.; Maddocks, J.H.; Kahn, J.D., A continuum rod model of sequence-dependent DNA structure, J. Chem. Phys., 105, 5626, (1996)
[29] Miller, R.; Shenoy, V.B., Size-dependent elastic properties of nano-sized structural elements, Nanotechnology, 11, 139-147, (2000)
[30] Miller, J.T.; Lazarus, A.; Audoly, B.; Reis, P.M., Shapes of a suspended curly hair, Phys. Rev. Lett., 112, (2014)
[31] Mora, M.G.; Muller, S., Derivation of the nonlinear bending-torsion theory for inextensible rods by \(\varGamma\)-convergence, Calc. Var., 18, 287-305, (2003) · Zbl 1053.74027
[32] Moroz, J.D.; Nelson, P., Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. USA, 94, 14418-14422, (1997)
[33] Palanthandalam-Madpusi, H.J.; Goyal, S., Robust estimation of nonlinear constitutive law from static equilibrium data for modeling the mechanics of DNA, Automatica, 47, 1175-1182, (2011) · Zbl 1235.93075
[34] Schmidt, B., On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190, 1-55, (2008) · Zbl 1156.74028
[35] Simo, J.C.; Vu-Quoc, L., A geometrically-exact rod model incorporating shear and torsion-warping deformation, Int. J. Solids Struct., 27, 371-393, (1991) · Zbl 0731.73029
[36] Singh, R., Kumar, S., Kumar, A.: Effect of anisotropy and intrinsic twist on coupled deformations in an elastic rod (2016, in preparation)
[37] Tadmor, E.B.; Smith, G.S.; Bernstein, N.; Kaxiras, E., Mixed finite element and atomistic formulation for complex crystals, Phys. Rev. B, 59, 235-245, (1999)
[38] Tersoff, J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett., 61, 2879-2882, (1988)
[39] Timoshenko, S.P.: Strength of Materials, 2nd edn. Van Nostrand, Princeton (1940) · JFM 66.1364.04
[40] Upamanyu, M.; Wang, H.L.; Liang, H.Y.; Mahajan, R., Strain dependent twist stretch elasticity in chiral filaments, J. R. Soc. Interface, 20, 303-310, (2008)
[41] Wang, M.D.; Yin, H.; Landick, R.; Gelles, J.; Block, S.M., Stretching DNA with optical tweezers, Biophys. J., 72, 1335-1346, (1997)
[42] Yang, J.Z.; Weinan, E., Generalized Cauchy-Born rules for elastic deformations of plates, sheets and rods: derivation of continuum models from atomistic models, Phys. Rev. B, 74, (2006)
[43] Yoshikawa, M.; Mori, Y.; Maegawa, M.; Katagiri, G.; Ishida, H.; Ishitani, A., Raman scattering from diamond particles, Appl. Phys. Lett., 62, 3114, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.