×

Numerical evaluation of multicomponent cation exchange reactive transport in physically and geochemically heterogeneous porous media. (English) Zbl 1338.76122

Summary: Experimental evidence and stochastic studies strongly show that the transport of reactive solutes in porous media is significantly influenced by heterogeneities in hydraulic conductivity, porosity, and sorption parameters. In this paper, we present Monte Carlo numerical simulations of multicomponent reactive transport involving competitive cation exchange reactions in a two-dimensional vertical physically and geochemically heterogeneous medium. Log hydraulic conductivity, \(\log K\), and log cation exchange capacity (log CEC) are assumed to be random Gaussian functions with spherical semivariograms. Random realizations of \(\log K\) and log CEC are used as input data for the numerical simulation of multicomponent reactive transport with \(\text{CORE}^{2 \text D}\), a general purpose reactive transport code. Longitudinal features of the fronts of reactive and conservative species are computed from the temporal and spatial moments of depth-averaged concentrations. Monte Carlo simulations show that: (1) the displacement of reactive fronts increases with increasing variance of \(\log K\), while it decreases with the variance of log CEC; (2) second-order spatial moments increase with increasing variances of \(\log K\) and log CEC; (3) uncertainties in the mean arrival time are largest (smallest) for negatively (positively) correlated \(\log K\) and log CEC; (4) cations undergoing competitive cation exchange exhibit different apparent velocities and retardation factors due to both physical and geochemical heterogeneities; and (5) the correlation between \(\log K\) and log CEC affects significantly apparent cation retardation factors in heterogeneous aquifers.

MSC:

76S05 Flows in porous media; filtration; seepage
76R05 Forced convection
76M35 Stochastic analysis applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. Balkema, Rotterdam (1993)
[2] Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. Balkema, Rotterdam, Netherlands (1994)
[3] Appelo, C.A.J., Willemsen, A.: Geochemical calculations and observations on salt water intrusions, I. A combined geochemical/mixing cell model. J. Hydrol. 94, 313–330 (1987) · doi:10.1016/0022-1694(87)90058-8
[4] Attinger, S., Dentz, M., Kinzelbach, H., Kinzelbach, W.: Temporal behaviour of a solute cloud in a chemically heterogeneous porous medium. J. Fluid Mech. 386, 77–104 (1999) · Zbl 0954.76087 · doi:10.1017/S0022112099004334
[5] Attinger, S., Micha, J.D., Kinzelbach, W.: Multiscale modeling of nonlinearly adsorbing solute transport. Multiscale Model. Simul. 1(3), 408–431 (2003). doi: 10.1137/s1540345903412402 · Zbl 1191.76097 · doi:10.1137/S1540345903412402
[6] Behkit, H.M., Hassan, A.E.: Stochastic modeling of colloid-contaminant transport in physically and geochemically heterogeneous porous media. Water Resour. Res. 41(2), W02010.1–W02010.18 (2005). doi: 10.1029/2004wr003262
[7] Bosma, W.J.P., Bellin, A., Vanderzee, S., Rinaldo, A.: Linear equilibrium adsorbing solute transport in physically and chemically heterogeneous porous formations.2. Numerical results. Water Resour. Res. 29(12), 4031–4043 (1993) · doi:10.1029/93WR02305
[8] Botter, G., Bertuzzo, E., Bellin, A., Rinaldo, A.: On the Lagrangian formulations of reactive solute transport in the hydrologic response. Water Resour. Res. 41(4), W04008.1–W04008.13 (2005). doi: 10.1029/2004wr003544 · doi:10.1029/2004WR003544
[9] Cassel, D.K., Wendroth, O., Nielsen, D.R.: Assessing spatial variability in an agricultural experiment station field: opportunities arising from spatial dependence. Agron J. 92(4), 706–714 (2000) · doi:10.2134/agronj2000.924706x
[10] Christiansen, J.S.: Stochastic simulation of cation exchange reactions. Ph.D., Technical university of Demark, Copenhagon (2000)
[11] Cirpka, O.A.: Effects of sorption on transverse mixing in transient flows. J. Contam. Hydrol. 78(3), 207–229 (2005). doi: 10.1016/j.jconhyd.2005.05.008 · doi:10.1016/j.jconhyd.2005.05.008
[12] Dai, Z., Samper, J.: Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour. Res. 40, W07407 (2004) · doi:10.1029/2004WR003248
[13] Dai, Z., Samper, J.: Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J. Hydrol. 327(3–4), 447–461 (2006) · doi:10.1016/j.jhydrol.2005.11.052
[14] Espinoza, C., Valocchi, A.J.: Stochastic analysis of one-dimensional transport of kinetically adsorbing solutes in chemically heterogeneous aquifers. Water Resour. Res. 33(11), 2429–2445 (1997) · doi:10.1029/97WR02169
[15] Fernandez-Garcia, D., Illangasekare, T.H., Rajaram, H.: Differences in the scale-dependence of dispersivity estimated from temporal and spatial moments in chemically and physically heterogeneous porous media. Adv. Water Resour. 28(7), 745–759 (2005). doi: 10.1016/j.advwatres.2004.12.011 · doi:10.1016/j.advwatres.2004.12.011
[16] Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice Hall, Hemel Hempstead (1993)
[17] Giacobbo, F., Patelli, E.: Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media. Ann. Nucl. Energy 34(1–2), 51–63 (2007) · doi:10.1016/j.anucene.2006.11.011
[18] Gómez-Hernández, J.J.: Programas complementarios para el análisis estocastico del transporte de radionucleidos. ENRESA, Madrid (1993)
[19] Gomez-Hernandez, J.J., Fu, J.L., Fernandez-Garcia, D.: Upscaling retardation factors in 2-D porous media. In: International Conference on Calibration and Reliability in Groundwater Modelling: from Uncertainty to Decision Making, vol. 304, pp. 130–136 (2006)
[20] Gómez-Hernández, J.J., Journel, A.G., (eds.): Joint Sequential Simulation of Multigaussian Fields. Kluwer, Norwell (1993)
[21] Hu, B.X., Wu, J., Zhang, D.: A numerical method of moments for solute transport in physically and chemically nonstationary formations: linear equilibrium sorption with random K-d. Stoch. Environ. Res. Risk Assess. 18(1), 22–30 (2004). doi: 10.1007/s00477-003-0161-5 · Zbl 1145.86302 · doi:10.1007/s00477-003-0161-5
[22] Jacques, D., Mouvet, C., Mohanty, B., Vereecken, H., Feyen, J.: Spatial variability of atrazine sorption parameters and other soil properties in a podzoluvisol. J. Contam. Hydrol. 36(1–2), 31–52 (1999) · doi:10.1016/S0169-7722(98)00141-7
[23] Janssen, G., Cirpka, O.A., van de Zee, S.: Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour. Res. 42(1), W01417.1–W01417.12 (2006). doi: 10.1029/2005wr004042
[24] Jose, S.C., Rahman, M.A., Cirpka, O.A.: Large-scale sandbox experiment on longitudinal effective dispersion in heterogeneous porous media. Water Resour. Res. 40(12), W12415.1–W12415.13 (2004). doi: 10.1029/2004wr003363 · doi:10.1029/2004WR003363
[25] Kuzyakova, I.F., Romanenkov, V.A., Kuzyakov, Y.V.: Application of geostatistics in processing the results of soil and agrochemical studies. Eurasian Soil Sci. 34(11), 1219–1228 (2001)
[26] Langmuir, D.: Aqueous Environmental Geochemistry. Prentice Hall, New Jersey (1997)
[27] Lawrence, A.E., Sanchez-Vila, X., Rubin, Y.: Conditional moments of the breakthrough curves of kinetically sorbing solute in heterogeneous porous media using multirate mass transfer models for sorption and desorption. Water Resour. Res. 38(11), 1248 (2002). doi: 10.1029/2001wr001006 · doi:10.1029/2001WR001006
[28] Marseguerra, M., Zio, E., Patelli, E., Giacobbo, F., Ventura, G., Mingrone, G.: Monte Carlo simulation of contaminant release from a radioactive waste deposit. Math. Comput. Simul. 62(3–6), 421–430 (2003) · Zbl 1011.92046 · doi:10.1016/S0378-4754(02)00237-9
[29] Matschonat, G., Vogt, R.: Equilibrium solution composition and exchange properties of disturbed and undisturbed soil samples from an acid forest soil. Plant Soil 183(2), 171–179 (1996) · doi:10.1007/BF00011432
[30] MirallesWilhelm, F., Gelhar, L.W.: Stochastic analysis of sorption macrokinetics in heterogeneous aquifers. Water Resour. Res. 32(6), 1541–1549 (1996) · doi:10.1029/96WR00791
[31] Mojid, M.A., Vereecken, H.: On the physical meaning of retardation factor and velocity of a nonlinearly sorbing solute. J. Hydrol. 302(1–4), 127–136 (2005). doi: 10.1016/j.jhydrol.2004.06.041 · doi:10.1016/j.jhydrol.2004.06.041
[32] Pang, L.P., Goltz, M., Close, M.: Application of the method of temporal moments to interpret solute transport with sorption and degradation. J. Contam. Hydrol. 60(1–2), 123–134 (2003) · doi:10.1016/S0169-7722(02)00061-X
[33] Pucci, A.A., Szabo, Z., Owens, J.P.: Variations in pore-water quality, mineralogy, and sedimentary texture of clay-silts in the lower miocene kirkwood formation. In: Proceedings of the Ocean Drilling Program, Scientific Results, Atlantic City, New Jersey, pp. 317–341 (1997)
[34] Salamon, P., Fernandez-Garcia, D., Gomez-Hernandez, J.J.: Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour. Res. 43(8), W08404 (2007). doi: 10.1029/2006wr005522 · doi:10.1029/2006WR005522
[35] Samper, J., Yang, C., Montenegro, L., 2003. CORE2D version 4: A code for non-isothermal water flow and reactive solute transport. Users manual. University of La Coruña, Spain (2003)
[36] Samper, J., Yang, C.: Stochastic analysis of transport and multicomponent competitive monovalent cation exchange in aquifers. Geosphere 2, 102–112 (2006) · doi:10.1130/GES00030.1
[37] Samper, J., Zhang, G., Montenegro, L.: Coupled microbial and geochemical reactive transport models in porous media: formulation and application to synthetic and in situ experiments. Cuad. Geol. Iber. 32(2), 211–217 (2006)
[38] Srivastava, R., Sharma, P.K., Brusseau, M.L.: Reactive solute transport in macroscopically homogeneous porous media: analytical solutions for the temporal moments. J. Contam. Hydrol. 69(1–2), 27–43 (2004). doi: 10.1016/s0169-7722(03)00155-4 · doi:10.1016/S0169-7722(03)00155-4
[39] Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet. Sci. Lett. 240(3–4), 539–558 (2005) · doi:10.1016/j.epsl.2005.09.017
[40] Tompson, A.F.B.: Numerical-simulation of chemical migration in physically and chemically heterogeneous porous-media. Water Resour. Res. 29(11), 3709–3726 (1993) · doi:10.1029/93WR01526
[41] Valocchi, A.J.: Spatial moment analysis of the transport of kinetically adsorbing solutes through stratified aquifers. Water Resour. Res. 25(2), 273–279 (1989) · doi:10.1029/WR025i002p00273
[42] Valocchi, A.J.: Use of temporal moment analysis to study reactive solute transport in aggregated porous-media. Geoderma 46(1–3), 233–247 (1990) · doi:10.1016/0016-7061(90)90017-4
[43] Wirth, S.T.: Regional-scale analysis of soil microbial biomass and soil basal CO2-respiration in Northeastern Germany. In: Sustaining the Global Farm–Selected Papers from the 10th International Soil Conservation Organization Meeting, pp. 23–28. Prudue University, West Lafayette, Indiana USA, May 23–28 (2001)
[44] Xu, T., Samper, J., Ayora, C., Mazano, M., Custodio, E.: Modelling of non-isothermal multi-component reactive transport in field-scale porous media flow system. J. Hydrol. 214, 144–164 (1999) · doi:10.1016/S0022-1694(98)00283-2
[45] Yang, C., Samper, J.: Multicomponent reactive transport in hydrodynamically and geochemically heterogeneous porous media (abstract). American Geophysical Union Fall Meeting, San Francisco, pp. H33F–0541 (2004)
[46] Yang, C., Samper, J., Molinero, J.: Inverse microbial and geochemical reactive transport models in porous media. Phys. Chem. Earth, Parts A/B/C 33(12–13), 1026–1034 (2008). doi: 10.1016/j.pce.2008.05.016 · doi:10.1016/j.pce.2008.05.016
[47] Yang, C., Samper, J., Molinero, J., Bonilla, M.: Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radioactive waste repository. J. Contam. Hydrol. 93(1–4), 130–148 (2007). doi: 10.1016/j.jconhyd.2007.01.008 · doi:10.1016/j.jconhyd.2007.01.008
[48] Yang, C., Samper, J., Zhu, C., Jones, S.B.: Numerical modeling of the development of a preferentially leached layer on feldspar surfaces. Environ. Geol. (2009). doi: 10.1007/s00254-008-1445-3
[49] Ye, M., Pan, F., Wu, Y.S., Hu, B.X., Shirley, C., Yu, Z.B.: Assessment of radionuclide transport uncertainty in the unsaturated zone of Yucca Mountain. Adv. Water Resour. 30(1), 118–134 (2007). doi: 10.1016/j.advwatres.2006.03.005 · doi:10.1016/j.advwatres.2006.03.005
[50] Yoon, H., Zhang, C.Y., Werth, C.J., Valocchi, A.J., Webb, A.G.: Numerical simulation of water flow in three dimensional heterogeneous porous media observed in a magnetic resonance imaging experiment. Water Resour. Res. 44(6), W06405 (2008). doi: 10.1029/2007wr006213 · doi:10.1029/2007WR006213
[51] Zavala-Sanchez, V., Dentz, M., Sanchez-Vila, X.: Effective dispersion in a chemically heterogeneous medium under temporally fluctuating flow conditions. Adv. Water Resour. 30(5), 1342–1354 (2007). doi: 10.1016/j.advwatres.2006.11.010 · doi:10.1016/j.advwatres.2006.11.010
[52] Zhang, Y.K., Seo, B.M.: Numerical simulations of non-ergodic solute transport in three-dimensional heterogeneous porous media. Stoch. Environ. Res. Risk Assess. 18(3), 205–215 (2004). doi: 10.1007/s00477-004-0178-4 · Zbl 1145.76455 · doi:10.1007/s00477-004-0190-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.