×

Subgradient algorithms for solving variable inequalities. (English) Zbl 1338.90363

Summary: In this paper we consider the variable inequalities problem, that is, to find a solution of the inclusion given by the sum of a function and a point-to-cone application. This problem can be seen as a generalization of the classical inequalities problem taking a variable order structure. Exploiting this relation, we propose two variants of the subgradient algorithm for solving the variable inequalities model. The convergence analysis is given under convex-like conditions, which, when the point-to-cone application is constant, contains the old subgradient schemes.

MSC:

90C29 Multi-objective and goal programming
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alber, Ya. I.; Iusem, A. N.; Solodov, M. V., On the projected subgradient method for nonsmooth convex optimization in a Hilbert space, Math. Program., 81, 23-37 (1998) · Zbl 0919.90122
[3] Bao, T. Q.; Mordukhovich, B. S.; Soubeyran, A., Variational analysis in psychological modeling, J. Optim. Theory Appl. (2014) · Zbl 1320.90112
[4] Bauschke, H. H.; Borwein, J. M., On projection algorithms for solving convex feasibility problems, SIAM Rev., 38, 367-426 (1996) · Zbl 0865.47039
[5] Bauschke, H. H.; Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2011), Springer: Springer New York · Zbl 1218.47001
[6] Bello Cruz, J. Y., A subgradient method for vector optimization problems, SIAM J. Optim., 23, 2169-2182 (2013) · Zbl 1295.90065
[7] Bello Cruz, J. Y.; Bouza Allende, G., A steepest descent-like method for variable order vector optimization problems, J. Optim. Theory Appl., 162, 371-391 (2014) · Zbl 1315.90042
[8] Bello Cruz, J. Y.; Iusem, A. N., A strongly convergent direct method for monotone variational inequalities in Hilbert spaces, Numer. Funct. Anal. Optim., 30, 23-36 (2009) · Zbl 1161.49002
[9] Bello Cruz, J. Y.; Iusem, A. N., A strongly convergent method for nonsmooth convex minimization in Hilbert spaces, Numer. Funct. Anal. Optim., 32, 1009-1018 (2011) · Zbl 1232.90319
[10] Bello Cruz, J. Y.; Lucambio Pérez, L. R., A subgradient-like algorithm for solving vector convex inequalities, J. Optim. Theory Appl., 162, 392-404 (2014) · Zbl 1306.90141
[11] Bello Cruz, J. Y.; Lucambio Pérez, L. R., Convergence of a projected gradient method variant for quasiconvex objectives, Nonlinear Anal., 9, 2917-2922 (2010) · Zbl 1198.90356
[12] Browder, F. E., Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Zeit., 100, 201-225 (1967) · Zbl 0149.36301
[13] Censor, Y.; Herman, G. T., Block-iterative algorithms with underrelaxed Bregman projections, SIAM J. Optim., 13, 283-297 (2002) · Zbl 1055.90059
[14] Combettes, P. L.; Pesquet, J.-C., Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Variational Anal., 20, 307-330 (2012) · Zbl 1284.47043
[15] Chen, G. Y.; Johannes, J., Optimality conditions for set-valued optimization problems, Math. Methods Oper. Res., 48, 187-200 (1998) · Zbl 0927.90095
[16] Eichfelder, G., Variable Ordering Structures in Vector Optimization (2014), Springer Verlag: Springer Verlag Berlin · Zbl 1321.90151
[17] Eichfelder, G.; Duc Ha, T. X., Optimality conditions for vector optimization problems with variable ordering structures, Optimization, 62, 597-627 (2013) · Zbl 1273.90183
[18] Eichfelder, G., Optimal elements in vector optimization with variable ordering structure, J. Optim. Theory Appl., 151, 217-240 (2011) · Zbl 1230.90169
[19] Hudson, H. M.; Larkin, R. S., Accelerated image reconstruction using ordered subsets of projection data, IEEE Trans. Med. Imag., 13, 601-609 (1994)
[20] Iusem, A. N.; Svaiter, B. F.; Teboulle, M., Entropy-like proximal methods in convex programming, Math. Oper. Res., 19, 790-814 (1994) · Zbl 0821.90092
[21] Luc, D. T., Pareto optimality, game theory and equilibria, Pareto Optim., Springer Optim. Appl., 17, 481-515 (2008) · Zbl 1191.49002
[22] Luc, D. T., Theory of Vector Optimization. Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 319 (1989), Springer: Springer Berlin
[23] Luc, D. T.; Tan, N. X.; Tinh, P. N., Convex vector functions and their subdifferential, Acta Math. Vietnam., 23, 107-127 (1998) · Zbl 0906.49007
[24] Peressini, A. L., Ordered Topological Vector Space (1967), Harper and Row: Harper and Row New York · Zbl 0169.14801
[25] Polyak, B. T., Minimization of unsmooth functionals, USSR Comput. Math. Math. Phys., 9, 14-29 (1969) · Zbl 0229.65056
[26] Robinson, S. M., Extension of Newton’s method to nonlinear functions with values in a cone, Numer. Math., 19, 341-347 (1972) · Zbl 0227.65040
[27] Robinson, S. M., A subgradient algorithm for solving K-convex inequalities, (Optimization and Operations Research. Optimization and Operations Research, Lecture Notes in Economics and Mathematical Systems, vol. 117 (1976), Springer: Springer Berlin), 237-245 · Zbl 0328.90054
[28] Rockafellar, R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14, 877-898 (1976) · Zbl 0358.90053
[29] Rockmore, A. J.; Macovski, A., A maximum likelihood approach to transmission image reconstruction from projections, IEEE Trans. Nucl. Sci., 24, 1929-1935 (1977)
[30] Verma, R. U., Hybrid inexact proximal point algorithms based on RMM frameworks with applications to variational inclusion problems, J. Appl. Math. Comput., 39, 345-365 (2012) · Zbl 1311.47095
[31] von Neumann, J., Functional Operators. Functional Operators, The Geometry of Orthogonal Spaces, vol. 2 (1950), Princeton University Press: Princeton University Press Princeton · Zbl 0039.11701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.