×

zbMATH — the first resource for mathematics

A trust-region algorithm combining line search filter method with Lagrange merit function for nonlinear constrained optimization. (English) Zbl 1338.90461
Summary: This paper presents a trust-region algorithm which employs line search filter technique with Lagrange merit function for solving nonlinear equality constrained programming. At the current iteration, the general full trust-region subproblem is decomposed into a pair of trust-region subproblems in normal and tangential subspaces. The trial step is given by solving these two trust-region subproblems. Then, different from traditional trust-region method in which the next iterate is determined by the ratio of the actual reduction to the predicted reduction, the step size is decided by interior backtracking line search together with filter method. Consequently, the expensive computation raised by resolving trust-region subproblem many times to determine a new iteration point in traditional trust-region method can be reduced. And the difficult decisions in regard to the choice of penalty parameters in the merit functions can be avoided by using filter technique. The new method retains the global convergence to the first-order critical points under some reasonable assumptions without using a merit function. Meanwhile, by using Lagrange function in the filter, the method can overcome Maratos effect without using second order correction step and hence the superlinear local convergence is achieved. The preliminary numerical results are reported to show effectiveness of the proposed algorithm.

MSC:
90C55 Methods of successive quadratic programming type
90C30 Nonlinear programming
Software:
ipfilter
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bonnans, J. F.; Pola, C., A trust region interior point algorithm for linear constrained optimization, SIAM J. Optim., 7, 3, 717-731, (1997) · Zbl 0899.90146
[2] Byrd, R. H.; Schnabel, R. B.; Shultz, G. A., A trust-region algorithm for nonlinearly constrained optimization, SIAM J. Numer. Anal., 24, 1152-1170, (1987) · Zbl 0631.65068
[3] Dennis, J. E.; EI-Alem, M.; Maciel, M. C., A global convergence theory for general trust region based algorithms for equality constrained optimization, SIAM J. Optim., 7, 177-207, (1997) · Zbl 0867.65031
[4] Dolan, E. D.; More, J. J., Benchmarking optimization software with performance profiles, Math. Program., 91, 201C213, (2002) · Zbl 1049.90004
[5] El-Alem, M. M., Global convergence without assumption of linear independence for a trust-region algorithm for constrained optimization, J. Optim. Theor. App., 87, 563-577, (1995) · Zbl 0840.90117
[6] Fletcher, R.; Gould, N. I.M.; Leyffer, S.; Toint, P. L.; Wächter, A., Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming, SIAM J. Optim., 13, 635-659, (2002) · Zbl 1038.90076
[7] Fletcher, R.; Leyffer, S., Nonlinear programming without a penalty function, Math. Program., 91, 239-269, (2002) · Zbl 1049.90088
[8] Fletcher, R.; Leyffer, S.; Toint, P. L., On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13, 44-59, (2002) · Zbl 1029.65063
[9] Gould, N. I.M.; Loh, Y.; Robinson, D. P., A filter method with unified step computation for nonlinear optimization, SIAM J. Optim., 24, 175-209, (2014), no. 1 · Zbl 1301.49070
[10] Gu, C.; Zhu, D., A dwindling filter trust region algorithm for nonlinear optimization, Appl. Math. Comput., 240, 72-81, (2014) · Zbl 1334.90164
[11] Gu, C.; Zhu, D., A secant algorithm with line search filter method for nonlinear optimization, Appl. Math. Model., 35, 879-894, (2011) · Zbl 1205.90007
[12] Hock, W.; Schittkowski, K., Test examples for nonlinear programming codes, Lecture Notes in Economics and Mathematics System, vol. 187, (1981), Springer-Verlag · Zbl 0452.90038
[13] Lalee, M.; Nocedal, J.; Plantenga, T. D., On the implementation of an algorithm for large-scale equality constrained optimization, SIAM J. Optim., 8, 682-706, (1998) · Zbl 0913.65055
[14] Nocedal, J.; Wright, S., Numerical optimization, (1999), Springer-Verlag New York · Zbl 0930.65067
[15] Nocedal, J.; Yuan, Y., Combining trust region and line search techniques, (Yuan, Y., Advances in Nonlinear Programming, (1998), Kluwer Dordrecht), 153-175 · Zbl 0909.90243
[16] Pei, Y.; Zhu, D., A trust-region algorithm combining line search filter technique for nonlinear constrained optimization, Int. J. Comput. Math., (2014) · Zbl 1304.49067
[17] Powell, M. J.D.; Yuan, Y., A trust-region algorithm for equality constrained optimization, Math. Program., 49, 189-211, (1991) · Zbl 0816.90121
[18] Schittkowski, K., More test examples for nonlinear mathematical programming codes, Lecture Notes in Economics and Mathematics System, Vol. 282, (1987), Springer-Verlag Berlin, Heidelberg · Zbl 0658.90060
[19] Shen, C.; Leyffer, S.; Fletcher, R., A nonmonotone filter method for nonlinear optimization, Comput. Optim. Appl., 52, 583-607, (2012), no. 3 · Zbl 1259.90140
[20] Su, K.; An, H., Global convergence of a nonmonotone filter method for equality constrained optimization, Appl. Math. Comput., 218, 9396-9404, (2012), no. 18 · Zbl 1245.90092
[21] Su, K.; Pu, D., A nonmonotone filter trust region method for nonlinear constrained optimization, J. Comput. Appl. Math., 223, 230-239, (2009) · Zbl 1180.65081
[22] Ulbrich, M.; Ulbrich, S.; Vicente, L. N., A globally convergent primal-dual interior-point filter method for nonlinear programming, Math. Program. Ser. A, 100, 379-410, (2004) · Zbl 1070.90110
[23] Ulbrich, S., On the superlinear local convergence of a filter-SQP method, Math. Program. Ser. B, 100, 217-245, (2004) · Zbl 1146.90525
[24] Wächter, A.; Biegler, L. T., Line search filter methods for nonlinear programming: motivation and global convergence, SIAM J. Comput., 16, 1-31, (2005) · Zbl 1114.90128
[25] Wähter, A.; Biegler, L. T., Line search filter methods for nonlinear programming: local convergence, SIAM J. Optim., 6, 32-48, (2005) · Zbl 1115.90056
[26] Wang, H.; Pu, D., A nonmonotone filter trust region method for the system of nonlinear equations, Appl. Math. Model., 37, 498-506, (2013) · Zbl 1349.90843
[27] Yang, Z.; Sun, W., A filter-trust-region method for LC^{1} unconstrained optimization and its global convergence, Anal. Theor. Appl., 24, 1, 55-66, (2008) · Zbl 1164.65022
[28] Zhang, J.; Zhu, D., Projected quasi-Newton algorithm with trust region for constrained optimization, J. Optim. Theory. App., 67, 369-393, (1990) · Zbl 0696.90050
[29] Zhang, X.; Liu, Z.; Liu, S., A trust region SQP-filter method for nonlinear second-order cone programming, Comput. Math. Appl., 63, 1569C-1576, (2012), no. 12 · Zbl 1252.90060
[30] Zhu, D., Nonmonotonic back-tracking trust region interior point algorithm for linear constrained optimization, J. Comput. Appl. Math., 155, 285-305, (2003) · Zbl 1028.65065
[31] Zhu, D., An affine scaling trust-region algorithm with interior backtracking technique for solving bound-constrained nonlinear systems, J. Comput. Appl. Math., 184, 343-361, (2005) · Zbl 1087.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.