zbMATH — the first resource for mathematics

A robust-CVaR optimization approach with application to breast cancer therapy. (English) Zbl 1338.90490
Summary: We present a framework to optimize the conditional value-at-risk (CVaR) of a loss distribution under uncertainty. Our model assumes that the loss distribution is dependent on the state of some system and the fraction of time spent in each state is uncertain. We develop and compare two robust-CVaR formulations that take into account this type of uncertainty. We motivate and demonstrate our approach using radiation therapy treatment planning of breast cancer, where the uncertainty is in the patient’s breathing motion and the states of the system are the phases of the patient’s breathing cycle. We use a CVaR representation of the tails of the dose distribution to the points in the body and account for uncertainty in the patient’s breathing pattern that affects the overall dose distribution.

90C90 Applications of mathematical programming
90C15 Stochastic programming
92C50 Medical applications (general)
CERR; Matlab
Full Text: DOI
[1] Artzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D., Coherent measures of risk, Mathematical Finance, 9, 3, 203-228, (1999) · Zbl 0980.91042
[2] Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A., Robust optimization, (2009), Princeton University Press · Zbl 1221.90001
[3] Ben-Tal, A.; Nemirovski, A., Robust solution of uncertain linear programs, Operations Research Letters, 25, 1-13, (1999) · Zbl 0941.90053
[4] Ben-Tal, A.; Nemirovski, A., Robust solutions of linear programming problems contaminated with uncertain data, Mathematical Programming, 88, 411-424, (2000) · Zbl 0964.90025
[5] Bertsimas, D.; Sim, M., The price of robustness, Operations Research, 52, 1, 35-53, (2004) · Zbl 1165.90565
[6] Bortfeld, T., Optimized planning using physical objectives and constraints, (Seminars in Radiation Oncology, Vol. 9, (1999), Elsevier), 20-34
[7] Bortfeld, T.; Chan, T. C.Y.; Trofimov, A.; Tsitsiklis, J. N., Robust management of motion uncertainty in intensity-modulated radiation therapy, Operations Research, 56, 6, 1461-1473, (2008) · Zbl 1167.90582
[8] Brock, K.; McShan, D.; Ten Haken, R.; Hollister, S.; Dawson, L.; Balter, J., Inclusion of organ deformation in dose calculations, Medical Physics, 30, 290, (2003)
[9] Brock, K.; Sharpe, M.; Dawson, L.; Kim, S.; Jaffray, D., Accuracy of finite element model-based multi-organ deformable image registration, Medical Physics, 32, 1647, (2005)
[10] Chan, T. C.Y.; Bortfeld, T.; Tsitsiklis, J. N., A robust approach to IMRT optimization, Physics in Medicine and Biology, 51, 2567-2583, (2006)
[11] Chu, M.; Zinchenko, Y.; Henderson, S. G.; Sharpe, M. B., Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty, Physics in Medicine and Biology, 50, 5463-5477, (2005)
[12] Deasy, J.; Blanco, A.; Clark, V., CERR: A computational environment for radiotherapy research, Medical Physics, 30, 979, (2003)
[13] Duffie, D.; Pan, J., An overview of value at risk, The Journal of Derivatives, 4, 3, 7-49, (1997)
[14] El Ghaoui, L.; Oks, M.; Oustry, F., Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51, 4, 543-556, (2003) · Zbl 1165.91397
[15] Erkut, E.; Ingolfsson, A.; Erdoğan, G., Ambulance location for maximum survival, Naval Research Logistics (NRL), 55, 1, 42-58, (2008) · Zbl 1279.90104
[16] Giordano, S.; Kuo, Y.; Freeman, J.; Buchholz, T.; Hortobagyi, G.; Goodwin, J., Risk of cardiac death after adjuvant radiotherapy for breast cancer, Journal of the National Cancer Institute, 97, 6, 419, (2005)
[17] Harris, E.; Correa, C.; Hwang, W.; Liao, J.; Litt, H.; Ferrari, V., Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment, Journal of Clinical Oncology, 24, 25, 4100, (2006)
[18] Hooning, M.; Botma, A.; Aleman, B.; Baaijens, M.; Bartelink, H.; Klijn, J., Long-term risk of cardiovascular disease in 10-year survivors of breast cancer, Journal of the National Cancer Institute, 99, 5, 365, (2007)
[19] Huang, D.; Zhu, S.; Fabozzi, F.; Fukushima, M., Portfolio selection with uncertain exit time: A robust CVaR approach, Journal of Economic Dynamics and Control, 32, 2, 594-623, (2008), ISSN 0165-1889 · Zbl 1181.91292
[20] Huang, D.; Zhu, S.; Fabozzi, F.; Fukushima, M., Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European Journal of Operational Research, 203, 1, 185-194, (2010), ISSN 0377-2217 · Zbl 1176.91145
[21] Jabbour, C.; Peña, J.; Vera, J.; Zuluaga, L., An estimation-free, robust conditional value-at-risk portfolio allocation model, The Journal of Risk, 11, 1, 57-78, (2008)
[22] Jagsi, R.; Moran, J.; Kessler, M.; Marsh, R.; Balter, J.; Pierce, L., Respiratory motion of the heart and positional reproducibility under active breathing control, International Journal of Radiation Oncology∗ Biology∗ Physics, 68, 1, 253-258, (2007)
[23] Jemal, A., Bray, F., Center, M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians. caac-20107v1.
[24] Kestin, L.; Sharpe, M.; Frazier, R.; Vicini, F.; Yan, D.; Matter, R., Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience, International Journal of Radiation Oncology∗ Biology∗ Physics, 48, 5, 1559-1568, (2000)
[25] Landau, D.; Adams, E.; Webb, S.; Ross, G., Cardiac avoidance in breast radiotherapy: a comparison of simple shielding techniques with intensity-modulated radiotherapy, Radiotherapy and Oncology, 60, 3, 247-255, (2001)
[26] Lind, P.; Pagnanelli, R.; Marks, L.; Borges-Neto, S.; Hu, C.; Zhou, S., Myocardial perfusion changes in patients irradiated for left-sided breast cancer and correlation with coronary artery distribution∗ 1, International Journal of Radiation Oncology∗ Biology∗ Physics, 55, 4, 914-920, (2003)
[27] Linsmeier, T. J.; Pearson, N. D., Value at risk, Financial Analysts Journal, 47-67, (2000)
[28] Lujan, A. E.; Larsen, E. W.; Balter, J. M.; Haken, R. K.T., A method for incorporating organ motion due to breathing into dose calculations, Medical Physics, 26, 5, 715-720, (1999)
[29] Marks, L.; Yu, X.; Prosnitz, R.; Zhou, S.; Hardenbergh, P.; Blazing, M., The incidence and functional consequences of RT-associated cardiac perfusion defects, International Journal of Radiation Oncology∗ Biology∗ Physics, 63, 1, 214-223, (2005)
[30] MATLAB®, version 8.1.0 (R2013a) (2013). The MathWorks Inc., Natick, Massachusetts.
[31] Natarajan, K.; Pachamanova, D.; Sim, M., Constructing risk measures from uncertainty sets, Operations Research, 57, 5, 1129-1141, (2009) · Zbl 1233.91153
[32] Ng, K. W.; Tian, G.-L.; Tang, M.-L., Dirichlet and related distributions: theory, methods and applications, (2011), John Wiley & Sons
[33] Ólafsson, A.; Wright, S., Efficient schemes for robust IMRT treatment planning, Physics in Medicine and Biology, 51, 5621, (2006)
[34] Purdie, T. G.; Dinniwell, R. E.; Letourneau, D.; Hill, C.; Sharpe, M. B., Automated planning of tangential breast intensity modulated radiotherapy using heuristic optimization, International Journal of Radiation Oncology Biology Physics, (2011)
[35] Quaranta, A.; Zaffaroni, A., Robust optimization of conditional value at risk and portfolio selection, Journal of Banking & Finance, 32, 10, 2046-2056, (2008), ISSN 0378-4266
[36] Rockafellar, R.; Uryasev, S., Optimization of conditional value-at-risk, Journal of Risk, 2, 21-42, (2000)
[37] Rockafellar, R.; Uryasev, S., Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, 26, 7, 1443-1471, (2002), ISSN 0378-426
[38] Romeijn, H. E.; Ahuja, R. K.; Dempsey, J.; Kumar, A., A new linear programming approach to radiation therapy treatment planning problems, Operations Research, 54, 2, 201-216, (2006) · Zbl 1167.90587
[39] Romeijn, H. E.; Ahuja, R. K.; Dempsey, J.; Kumar, A.; Li, J. G., A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning, Physics in Medicine and Biology, 48, 3521-3542, (2003)
[40] Vicini, F.; Sharpe, M.; Kestin, L.; Martinez, A.; Mitchell, C.; Wallace, M., Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy, International Journal of Radiation Oncology∗ Biology∗ Physics, 54, 5, 1336-1344, (2002)
[41] Wang, W.; Purdie, T.; Rahman, M.; Marshall, A.; Liu, F.; Fyles, A., Rapid automated treatment planning process to select breast cancer patients for active breathing control to achieve cardiac dose reduction, International Journal of Radiation Oncology∗ Biology∗ Physics, (2012)
[42] Wu, Q.; Mohan, R., Algorithms and functionality of an intensity modulated radiotherapy optimization system, Medical Physics, 27, 701, (2000)
[43] Zhu, S.; Fukushima, M., Worst-case conditional value-at-risk with application to robust portfolio management, Operations Research, 57, 5, 1155-1168, (2009), ISSN 0030-364X · Zbl 1233.91254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.