×

Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. (English) Zbl 1341.65045

Summary: We build a bridge between the hybrid high-order (HHO) and the hybridizable discontinuous Galerkin (HDG) methods in the setting of a model diffusion problem. First, we briefly recall the construction of HHO methods and derive some new variants. Then, by casting the HHO method in mixed form, we identify the numerical flux so that the HHO method can be compared to HDG methods. In turn, the incorporation of the HHO method into the HDG framework brings up new, efficient choices of the local spaces and a new, subtle construction of the numerical flux ensuring optimal orders of convergence on meshes made of general shape-regular polyhedral elements. Numerical experiments comparing two of these methods are shown.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N08 Finite volume methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI HAL

References:

[1] T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal.34 (1997) 828-852. · Zbl 0880.65084
[2] B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. Preprint (2014). · Zbl 1343.65140
[3] L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. MS&A. Springer (2014). · Zbl 1286.65141
[4] J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN48 (2014) 553-581. · Zbl 1297.65132
[5] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal.43 (2005) 1872-1896. · Zbl 1108.65102
[6] F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg.196 (2007) 3682-3692. · Zbl 1173.76370
[7] P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal.38 (2000) 1676-1706. · Zbl 0987.65111
[8] Z. Chen, BDM mixed methods for a nonlinear elliptic problem. J. Comput. Appl. Math.53 (1994) 207-223. · Zbl 0819.65129
[9] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal.47 (2009) 1319-1365. · Zbl 1205.65312
[10] B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG methods. Math. Comput.79 (2010) 1351-1367. · Zbl 1197.65173
[11] B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput.81 (2012) 1327-1353. · Zbl 1251.65158
[12] B. Cockburn and K. Shi, Devising HDG methods for Stokes flow: An overview. Comput. Fluids98 (2014) 221-229. · Zbl 1391.76315
[13] D.A. Di Pietro, J. Droniou and A. Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal.53 (2015) 2135-2157. · Zbl 1457.65194
[14] D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Math. Appl. Springer-Verlag, Berlin (2012). · Zbl 1231.65209
[15] D.A. Di Pietro and A. Ern, Equilibrated tractions for the Hybrid High-Order method. C. R. Acad. Sci Paris, Ser. I353 (2015) 279-282. · Zbl 1310.65143
[16] D.A. Di Pietro, and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg.283 2015 1-21. · Zbl 1423.74876
[17] D.A. Di Pietro, and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris, Ser. I353 (2015) 31-34. · Zbl 1308.65196
[18] D.A. Di Pietro, A. Ern and S. Lemaire. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math.14 (2014) 461-472. · Zbl 1304.65248
[19] D.A. Di Pietro and S. Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput.84 (2015) 1-31. · Zbl 1308.74145
[20] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math.105 (2006) 35-71. · Zbl 1109.65099
[21] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. M3AS Math. Models Methods Appl. Sci.20 (2010) 1-31. · Zbl 1423.74568
[22] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput.34 (1980) 441-463. · Zbl 0423.65009
[23] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal.30 (2010) 1009-1043. · Zbl 1202.65144
[24] R. Herbin and F. Hubert, Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids. In Finite Volumes for Complex Applications V. Edited by R. Eymard and J.-M. Hérard. John Wiley and Sons (2008) 659-692. · Zbl 1422.65314
[25] H. Kabaria, A. Lew and B. Cockburn, A hybridizable discontinuous Galerkin formulation for nonlinear elasticity. Comput. Methods Appl. Mech. Engrg.283 (2015) 303-329. · Zbl 1423.74895
[26] J. Koebbe, A computationally efficient modification of mixed finite element methods for flow problems with full transmissivity tensors. Numer. Methods Partial Differ. Equ.9 (1993) 339-355. · Zbl 0773.76041
[27] Y. Kuznetsov, K. Lipnikov and M. Shashkov, Mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci.8 (2004) 301-324. · Zbl 1088.76046
[28] C. Le Potier, A finite Volume Method for the Approximation of Highly Anisotropic Diffusion Operators on Unstructured Meshes. In Finite Volumes for Complex Applications IV (2005). · Zbl 1422.65210
[29] C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for incompressible flow problems. Diploma thesis, MathCCES/IGPM, RWTH Aachen (2010).
[30] K. Lipnikov and G. Manzini. A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation. J. Comput. Phys.272 (2014) 360-385. · Zbl 1349.65581
[31] I. Oikawa, A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput.65 (2015) 327-340. · Zbl 1331.65162
[32] W. Qiu and K. Shi, An HDG method for linear elasticity with strongly symmetric stresses. Preprint (2015).
[33] W. Qiu and K. Shi. An HDG method for convection-diffusion equations. J. Sci. Comput.66 (2016) 346-357. · Zbl 1341.65039
[34] S.-C. Soon, Hybridizable discontinuous Galerkin methods for solid mechanics. Ph.D. thesis, University of Minnesota, Minneapolis (2008).
[35] S.-C. Soon, B. Cockburn and H.K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Engrg.80 (2009) 1058-1092. · Zbl 1176.74196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.