zbMATH — the first resource for mathematics

Optimal Hardy-Littlewood type inequalities for polynomials and multilinear operators. (English) Zbl 1342.26040
J. E. Littlewood [Q. J. Math., Oxf. Ser. 1, 164–174 (1930; JFM 56.0335.01)] introduced an inequality for bounded bilinear forms on \(c_0 \times c_0\), which was generalized and improved by H. F. Bohnenblust and E. Hille [Ann. Math. (2) 32, 600–622 (1931; Zbl 0001.26901)] for continuous multilinear forms on \(c_0 \times c_0 \times \cdots \times c_0\), by G. H. Hardy and J. E. Littlewood [Q. J. Math., Oxf. Ser. 5, 241–254 (1934; JFM 60.0335.01)] for continuous multilinear forms on \(l_{p_1} \times l_{p_2} \times \cdots \times l_{p_m}\), by A. Defant and P. Sevilla-Peris [J. Funct. Anal. 256, No. 5, 1642–1664 (2009; Zbl 1171.46034)] for \(l_s\)-valued continuous multilinear mappings on \(c_0 \times c_0 \times \cdots \times c_0\) and by N. Albuquerque et al. [J. Funct. Anal. 266, No. 6, 3726–3740 (2014; Zbl 1319.46035)] and V. Dimant and P. Sevilla-Peris [“Summation of coefficients of polynomials on \(l_p\)-spaces”, Preprint, arXiv:1309.6063] for \(l_s\)-valued continuous multilinear mappings on \(l_{p_1} \times l_{p_2} \times \cdots \times l_{p_m}\).
The authors study in depth the remaining cases of the Defant and Sevilla-Peris result [loc. cit.] and give a simpler proof of the sufficient part of the Defant and Sevilla-Peris theorem to prove a more general result. Moreover, the authors prove similar results for multilinear mappings with arbitrary codomains which assume their cotypes and obtain better estimates for the constants of vector-valued Bohnenblust-Hille inequalities [loc. cit.].
The techniques and the ideas are simple and elementary and the paper is systematically well-organized.

26D07 Inequalities involving other types of functions
26D15 Inequalities for sums, series and integrals
Full Text: DOI
[1] Albuquerque, N.; Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., Sharp generalizations of the multilinear Bohnenblust-Hille inequality, Journal of Functional Analysis, 266, 3726-3740, (2014) · Zbl 1319.46035
[2] Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., The Bohr radius of the ndimensional polydisk is equivalent to \(\sqrt{(\log n)/n} \), Advances in Mathematics, 264, 726-746, (2014) · Zbl 1331.46037
[3] Bennett, G., Schur multipliers, Duke Mathematical Journal, 44, 603-639, (1977) · Zbl 0389.47015
[4] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, Vol. 223, Springer-Verlag, Berlin, 1976. · Zbl 0344.46071
[5] Boas, H. P., Majorant series, Journal of the Korean Mathematical Society, 37, 321-337, (2000) · Zbl 0965.32001
[6] Bohnenblust, H.; Hille, E., On the absolute convergence of Dirichlet series, Annals of Mathematics, 32, 600-622, (1931) · Zbl 0001.26901
[7] Bombal, F.; Pérez-García, D.; Villanueva, I., Multilinear extensions of grothendieck’s theorem, The Quarterly Journal 0f Mathematics, 55, 441-450, (2004) · Zbl 1078.46030
[8] Botelho, G., Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proceedings of the Royal Irish Academy. Section A. Mathematical and Physical Sciences, 97, 145-153, (1997) · Zbl 0903.46018
[9] Carl, B., absolut-(\(p\), 1)-summierende identische operatoren von l_{u}in l_{v}, Mathematische Nachrichten, 63, 353-360, (1974) · Zbl 0292.47019
[10] Defant, A.; Popa, D.; Schwarting, U., Coordinatewise multiple summing operators in Banach spaces, Journal of Functional Analysis, 259, 220-242, (2010) · Zbl 1205.46026
[11] Defant, A.; Sevilla-Peris, P., A new multilinear insight on littlewood’s 4/3-inequality, Journal of Functional Analysis, 256, 1642-1664, (2009) · Zbl 1171.46034
[12] Defant, A.; Sevilla-Peris, P., The Bohnenblust-Hille cycle of ideas from a modern point of view, Functiones et Approximatio Commentarii Mathematici, 50, 55-127, (2014) · Zbl 1294.30009
[13] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, Vol. 43, Cambridge University Press, Cambridge, 1995. · Zbl 0855.47016
[14] V. Dimant and P. Sevilla-Peris, Summation of coefficients of polynomials on ℓ_{p}spaces, arXiv:1309.6063v1 [math.FA] 24 Sep 2013.
[15] Fournier, J. F., Mixed norms and rearrangements: sobolev’s inequality and littlewood’s inequality, Annali di Matematica Pura ed Applicata, 148, 51-76, (1987) · Zbl 0639.46034
[16] D. J. H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University Press, Cambridge, 2007. · Zbl 1135.26014
[17] Haagerup, U., The best constants in the Khintchine inequality, Studia Mathematica, 70, 231-283, (1981) · Zbl 0501.46015
[18] Hardy, G.; Littlewood, J., bilinear forms bounded in space [p, q], Quarterly Journal of Mathematics, 5, 241-254, (1934) · JFM 60.0335.01
[19] G. Hardy, J. Littlewood and G. Polya, Inequalities, Second edition, Cambridge at the University press, 1952. · Zbl 0965.32001
[20] König, H.; Kwapień, S., Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity, 5, 115-152, (2001) · Zbl 0998.60018
[21] Kwapień, S., some remarks on (p, q)-absolutely summing operators in ℓ_{p}-spaces, Studia Mathematica, 29, 327-337, (1968) · Zbl 0182.17001
[22] Littlewood, J. E., On bounded bilinear forms in an infinite number of variables, Quarterly Journal of Mathematcis, 1, 164-174, (1930) · JFM 56.0335.01
[23] Matos, M. C., Fully absolutely summing mappings and Hilbert-Schmidt multilinear mappings, Collectanea Mathematica, 54, 111-136, (2003) · Zbl 1078.46031
[24] B. Maurey and G. Pisier, Séries de variables aleatoires vectorielles indépendantes et proprietés géometriques des espaces de Banach, Studia Mathematica 58 (1976), 45-90. · Zbl 0344.47014
[25] Pérez-García, D.; Villanueva, I., Multiple summing operators on Banach spaces, Journal of Mathematical Analysis and Applications, 285, 86-96, (2003) · Zbl 1044.46037
[26] Pérez-García, D.; Villanueva, I., multiple summing operators on C(\(K\))spaces, Arkiv för Mathematik, 42, 153-171, (2004) · Zbl 1063.46032
[27] Praciano-Pereira, T., on bounded multilinear forms on a class of ℓ_{p}spaces, Journal of Mathematical Analysis and Applications, 81, 561-568, (1981) · Zbl 0497.46007
[28] U. C. Schwarting, Vector Valued Bohnenblust-Hille Inequalities, Thesis, 2013.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.