×

zbMATH — the first resource for mathematics

Algebraic properties of small Hankel operators on the harmonic Bergman space. (English) Zbl 1342.47037
Summary: This paper completely characterizes the commuting problem of two small Hankel operators acting on the harmonic Bergman space with the symbols one being bounded and another being quasihomogeneous, or both being harmonic. The characterizations for semi-commuting problem and the product of two small Hankel operators being another small Hankel operator for certain class of symbols are also obtained.

MSC:
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
30H20 Bergman spaces and Fock spaces
PDF BibTeX XML Cite
Full Text: Euclid
References:
[1] \beginbarticle \bauthor\binitsP. \bsnmAhern and \bauthor\binits\uZ. \bsnm, \batitleA theorem of Brown-Halmos type for Bergman space Toeplitz operators, \bjtitleJ. Funct. Anal. \bvolume187 (\byear2001), page 200-\blpage210. \endbarticle \OrigBibText P. Ahern and Ž. Čučković, A theorem of Brown-Halmos type for Bergman space Toeplitz operators , J. Funct. Anal. 187 (2001), 200-210. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0996.47037
[2] \beginbarticle \bauthor\binitsS. \bsnmAxler and \bauthor\binits\uZ. \bsnm, \batitleCommuting Toeplitz operators with harmonic symbols, \bjtitleIntegral Equations Operator Theory \bvolume14 (\byear1991), page 1-\blpage12. \endbarticle \OrigBibText S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols , Integr. Equ. oper. Theory 14 (1991), 1-12. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0733.47027
[3] \beginbarticle \bauthor\binitsA. \bsnmBrown and \bauthor\binitsP. R. \bsnmHalmos, \batitleAlgebraic properties of Toeplitz operator, \bjtitleJ. Reine Angew. Math. \bvolume213 (\byear1964), page 89-\blpage102. \endbarticle \OrigBibText A. Brown and P. Halmos, Algebraic properties of Toeplitz operator , J. Reine Angew. Math. 213 (1964), 89-102. \endOrigBibText \bptokstructpyb \endbibitem
[4] \beginbarticle \bauthor\binitsY. \bsnmChen, \bauthor\binitsH. \bsnmKoo and \bauthor\binitsY. J. \bsnmLee, \batitleRanks of complex skew symmetric operators and its applications to Toeplitz operators, \bjtitleJ. Math. Anal. Appl. \bvolume425 (\byear2015), page 734-\blpage747. \endbarticle \OrigBibText Y. Chen, H. Koo and Y. Lee, Ranks of complex skew symmetric operators and its applications to Toeplitz operators , J. Math. Anal. Appl. 425 (2015), 734-747. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1320.47042
[5] \beginbarticle \bauthor\binitsB. \bsnmChoe and \bauthor\binitsY. J. \bsnmLee, \batitleCommuting Toeplitz operators on the harmonic Bergman spaces, \bjtitleMichigan Math. J. \bvolume46 (\byear1999), page 163-\blpage174. \endbarticle \OrigBibText B. Choe and Y. Lee, Commuting Toeplitz operators on the Harmonic Bergman spaces , Michigan Math. J. 46 (1999), 163-174. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0969.47023
[6] \beginbarticle \bauthor\binits\uZ. \bsnmand \bauthor\binitsN. V. \bsnmRao, \batitleMellin transform, monomial symbols, and commuting Toeplitz operators, \bjtitleJ. Funct. Anal. \bvolume154 (\byear1998), page 195-\blpage214. \endbarticle \OrigBibText Ž. Čučković and N. Rao, Mellin transform, monomial symbols, and commuting Toeplitz operators , J. Funct. Anal. 201 (2003), 121-147. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0936.47015
[7] \beginbarticle \bauthor\binitsX. \bsnmDing, \batitleA question of Toeplitz operators on the harmonic Bergman space, \bjtitleJ. Math. Anal. Appl. \bvolume344 (\byear2008), no. \bissue1, page 367-\blpage372. \endbarticle \OrigBibText X. Ding, A question of Toeplitz operators on the harmonic Bergman space , J. Math. Anal. Appl. 344 (1) (2008), 367-372. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1143.47018
[8] \beginbarticle \bauthor\binitsX. T. \bsnmDong and \bauthor\binitsZ. H. \bsnmZhou, \batitleCommuting quasihomogeneous Toeplitz operators on the harmonic Bergman space, \bjtitleComplex Anal. Oper. Theory \bvolume7 (\byear2013), no. \bissue4, page 1267-\blpage1285. \endbarticle \OrigBibText X. Dong and Z. Zhou, Commuting quasihomogeneous Toeplitz operators on the harmonic Bergman space . Compl. Anal. Oper. Theory 7 (4) (2013), 1267-1285. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1291.47024
[9] \beginbarticle \bauthor\binitsX. T. \bsnmDong and \bauthor\binitsZ. H. \bsnmZhou, \batitleProduct equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space, \bjtitleStudia Math. \bvolume219 (\byear2013), page 163-\blpage175. \endbarticle \OrigBibText X. Dong and Z. Zhou, Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space , Studia Math. 219 (2013), 163-175. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1310.47041
[10] \beginbarticle \bauthor\binitsX. T. \bsnmDong and \bauthor\binitsZ. H. \bsnmZhou, \batitleProducts of Toeplitz operators on the harmonic Bergman space, \bjtitleProc. Amer. Math. Soc. \bvolume138 (\byear2010), no. \bissue5, page 1765-\blpage1773. \endbarticle \OrigBibText X. Dong and Z. Zhou, Products of Toeplitz operators on the harmonic Bergman space , Proc. Amer. Math. Soc. 138 (5) (2010), 1765-1773. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1195.47014
[11] \beginbarticle \bauthor\binitsN. S. \bsnmFaour, \batitleA theorem of Nehari type, \bjtitleIllinois J. Math. \bvolume35 (\byear1991), page 533-\blpage535. \endbarticle \OrigBibText N. Faour, A theorem of Nehari type , Illinois J. Math. 35 (1991), 533-535. \endOrigBibText \bptokstructpyb \endbibitem
[12] \beginbarticle \bauthor\binitsS. R. \bsnmGarcia and \bauthor\binitsM. \bsnmPutinar, \batitleComplex symmetric operators and applications, \bjtitleTrans. Amer. Math. Soc. \bvolume358 (\byear2006), page 1285-\blpage1315. \endbarticle \OrigBibText S. Garcia and M. Putinar, Complex symmetric operators and applications , Trans. Amer. Math. Soc. 358 (2006), 1285-1315. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1087.30031
[13] \beginbarticle \bauthor\binitsK. \bsnmGuo and \bauthor\binitsD. \bsnmZheng, \batitleEssentially commuting Hankel and Toeplitz operators, \bjtitleJ. Funct. Anal. \bvolume201 (\byear2003), page 121-\blpage147. \endbarticle \OrigBibText K. Guo and D. Zheng, Essentially commuting Hankel and Toeplitz operators , J. Funct. Anal. 201 (2003), 121-147. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1036.47016
[14] \beginbarticle \bauthor\binitsK. \bsnmGuo and \bauthor\binitsD. \bsnmZheng, \batitleToeplitz algebra and Hankel algebra on the harmonic Bergman space, \bjtitleJ. Math. Anal. Appl. \bvolume276 (\byear2002), page 213-\blpage230. \endbarticle \OrigBibText K. Guo and D. Zheng, Toeplitz algebra and Hankel algebra on the harmonic Bergman space , J. Math. Anal. Appl. 276 (2002), 213-230. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1030.47020
[15] \beginbarticle \bauthor\binitsK. \bsnmGuo and \bauthor\binitsD. \bsnmZheng, \batitleInvariant subspaces, quasi-invariant subspaces, and Hankel operators, \bjtitleJ. Funct. Anal. \bvolume187 (\byear2001), no. \bissue2, page 308-\blpage342. \endbarticle \OrigBibText K. Guo and D. Zheng, Invariant subspaces, quasi-invariant subspaces, and Hankel operators , J. Funct. Anal. 187 (2) (2001), 308-342. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1045.47022
[16] \beginbarticle \bauthor\binitsY. K. \bsnmLee and \bauthor\binitsK. \bsnmZhu, \batitleSome differential and integral equations with applications to Toeplitz operators, \bjtitleIntegral Equations Operator Theory \bvolume44 (\byear2002), page 466-\blpage479. \endbarticle \OrigBibText Y. Lee and K. Zhu, Some differential and integral equations with applications to Toeplitz operators , Integr. Equ. Oper. Theory 44 (2002), 466-479. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1023.45005
[17] \beginbarticle \bauthor\binitsI. \bsnmLouhichi, \bauthor\binitsE. \bsnmStrouse and \bauthor\binitsL. \bsnmZakariasy, \batitleProducts of Toeplitz operators on the Bergman space, \bjtitleIntegral Equations Operator Theory \bvolume54 (\byear2006), page 525-\blpage539. \endbarticle \OrigBibText I. Louhichi, K. Stroethof and L. Zakariasy, Products of Toeplitz operators on the Bergman space , Integr. Equ. Oper. Theory 54 (2006), 525-539. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1109.47023
[18] \beginbarticle \bauthor\binitsI. \bsnmLouhichi and \bauthor\binitsL. \bsnmZakariasy, \batitleQuasihomogeneous Toeplitz operators on the harmonic Bergman space, \bjtitleArch. Math. (Basel) \bvolume98 (\byear2012), no. \bissue1, page 49-\blpage60. \endbarticle \OrigBibText I. Louhichi and L. Zakariasy, Quasihomogeneous Toeplitz operators on the harmonic Bergman space , Arch. Math. (Basel) 98 (1) (2012), 49-60. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1251.47029
[19] \beginbarticle \bauthor\binitsI. \bsnmLouhichi and \bauthor\binitsL. \bsnmZakariasy, \batitleOn Toeplitz operators with quasihomogeneous symbols, \bjtitleArch. Math. (Basel) \bvolume85 (\byear2005), page 248-\blpage257. \endbarticle \OrigBibText I. Louhichi and L. Zakariasy, On Toeplitz operators with quasihomogeneous symbols , Arch. Math. 85 (2005) 248-257. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1088.47019
[20] \beginbarticle \bauthor\binitsY. \bsnmLu and \bauthor\binitsB. \bsnmZhang, \batitleCommuting Hankel operator and Toeplitz operator on the Bergman space, \bjtitleChinese Ann. Math. Ser. A \bvolume32 (\byear2011), no. \bissue5, page 519-\blpage530. \endbarticle \OrigBibText Y. Lu and B. Zhang, Commuting Hankel operator and Toeplitz operator on the Bergman space , Chinese Ann. Math. (Ser. A) 32 (5) (2011), 519-530. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1243.47060
[21] \beginbarticle \bauthor\binitsR. \bsnmMartinez-Avendano, \batitleWhen do Toeplitz and Hankel operators commute? \bjtitleIntegral Equations Operator Theory \bvolume37 (\byear2000), page 341-\blpage349. \endbarticle \OrigBibText R. Martinez-Avendano, When do Toeplitz and Hankel operators commute? , Integr. Equ. oper. Theory 37 (2000), 341-349. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0961.47015
[22] \beginbbook \bauthor\binitsR. \bsnmRemmert, \bbtitleClassical topics in complex function theory, \bsertitleGraduate Texts in Methematics, vol. \bseriesno172, \bpublisherSpringer, \blocationNew York, \byear1998. \endbbook \OrigBibText R. Remmert, Classical Topics in Complex Function Theory , Graduate Texts in Methematics, 172, Springer, New York, 1998. \endOrigBibText \bptokstructpyb \endbibitem
[23] \beginbarticle \bauthor\binitsK. \bsnmZhu, \batitleDuality and Hankel operators on the Bergman spaces of bounded symmetric domains, \bjtitleJ. Funct. Anal. \bvolume81 (\byear1988), page 260-\blpage278. \endbarticle \OrigBibText K. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains , J. Funct. Anal. 81 (1988), 260-278. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0669.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.