×

On the supersymmetric completion of \(R + R^{2}\) gravity and cosmology. (English) Zbl 1342.83527

Summary: We revisit and clarify the supersymmetric versions of \(R+R^2\) gravity, in view of the renewed interest to these models in cosmology. We emphasize that the content of the dual standard supergravity theory in the old minimal formulation necessarily includes two massive chiral multiplets, that we call the inflaton and the goldstino. We point out that the presence of these multiplets is model independent in the old minimal formulation and therefore any theory that contains a single chiral multiplet fails to be a supersymmetric generalization of the \(R+R^2\) gravity. The supergravity interactions of the two chiral multiplets are encoded in a superpotential mass term and an arbitrary Kähler potential for the goldstino multiplet. The implication for cosmology of the supersymmetric \(R+R^2\) gravity is also discussed.

MSC:

83F05 Relativistic cosmology
83E50 Supergravity
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Ferrara, M.T. Grisaru and P. van Nieuwenhuizen, Poincaré and Conformal Supergravity Models With Closed Algebras, Nucl. Phys.B 138 (1978) 430 [INSPIRE]. · doi:10.1016/0550-3213(78)90389-9
[2] S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1., Phys. Lett.B 190 (1987) 86 [INSPIRE].
[3] S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, New minimal higher derivative supergravity coupled to matter, Nucl. Phys.B 306 (1988) 160 [INSPIRE]. · doi:10.1016/0550-3213(88)90175-7
[4] S. Ketov, F(R) supergravity, AIP Conf. Proc.1241 (2010) 613 [arXiv:0910.1165] [INSPIRE]. · doi:10.1063/1.3462693
[5] S.V. Ketov and A.A. Starobinsky, Embedding (R + R2)-Inflation into Supergravity, Phys. Rev.D 83 (2011) 063512 [arXiv:1011.0240] [INSPIRE].
[6] S.J. Gates Jr. and S.V. Ketov, Superstring-inspired supergravity as the universal source of inflation and quintessence, Phys. Lett.B 674 (2009) 59 [arXiv:0901.2467] [INSPIRE].
[7] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012). · Zbl 1245.83001 · doi:10.1017/CBO9781139026833
[8] T. Kugo and S. Uehara, N = 1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices and Spinor Derivative Operators, Prog. Theor. Phys.73 (1985) 235 [INSPIRE]. · Zbl 0979.83532 · doi:10.1143/PTP.73.235
[9] E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally Vanishing Cosmological Constant in N = 1 Supergravity, Phys. Lett.B 133 (1983) 61 [INSPIRE].
[10] J.R. Ellis, A. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-Scale Supersymmetric Standard Model, Phys. Lett.B 134 (1984) 429 [INSPIRE].
[11] R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model, JCAP06 (2013) 028 [arXiv:1306.3214] [INSPIRE]. · doi:10.1088/1475-7516/2013/06/028
[12] R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP07 (2013) 002 [arXiv:1306.5220] [INSPIRE]. · doi:10.1088/1475-7516/2013/07/002
[13] J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like Inflationary Models as Avatars of No-Scale Supergravity, JCAP10 (2013) 009 [arXiv:1307.3537] [INSPIRE]. · doi:10.1088/1475-7516/2013/10/009
[14] J. Ellis, D.V. Nanopoulos and K.A. Olive, No-Scale Supergravity Realization of the Starobinsky Model of Inflation, Phys. Rev. Lett.111 (2013) 111301 [arXiv:1305.1247] [INSPIRE]. · doi:10.1103/PhysRevLett.111.111301
[15] Y. Watanabe and J. Yokoyama, Gravitational modulated reheating and non-Gaussianity in Supergravity R2inflation, Phys. Rev.D 87 (2013) 103524 [arXiv:1303.5191] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.