×

zbMATH — the first resource for mathematics

Scale transition theory with special reference to species coexistence in a variable environment. (English) Zbl 1342.92162
Summary: Scale transition theory is a mathematical technique for understanding changes in population dynamics with changes in spatial or temporal scale. It explains the emergence of new properties on large scales from the interaction between nonlinearities and variation on small scales. It applies statistical theory for averaging nonlinear functions to understanding this interaction. The fundamental concepts are most easily illustrated with reference to spatial models where state variables on larger spatial scales are simply defined as averages of those on smaller scales. Scale transition theory also explains the conceptually difficult topic of how species coexistence arises from temporal fluctuations. In this case, averages of per capita growth rates over time define long-term population trends and outcomes, and these averages are critically affected by interactions between nonlinear dynamics and temporal variation in state variables and environmental variables. Two general mechanisms of species coexistence, the storage effect and relatively nonlinear competitive variance, emerge.

MSC:
92D25 Population dynamics (general)
92D40 Ecology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0040-5809(76)90051-4 · Zbl 0349.92030
[2] DOI: 10.1086/283553
[3] DOI: 10.1086/303199
[4] DOI: 10.1146/annurev.es.09.110178.001543
[5] DOI: 10.1016/0040-5809(81)90023-X · Zbl 0472.92015
[6] DOI: 10.1098/rstb.1990.0190
[7] DOI: 10.1006/tpbi.1994.1013 · Zbl 0804.92025
[8] Chesson P., Modeling Spatiotemporal Dynamics in Ecology pp 151– (1998)
[9] DOI: 10.1111/j.1442-9993.1998.tb00722.x
[10] DOI: 10.1006/tpbi.2000.1486 · Zbl 1035.92042
[11] DOI: 10.1016/S0040-5809(03)00095-9 · Zbl 1102.92048
[12] Chesson P., Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef pp 119– (2008)
[13] Chesson P. L., J. Math. Biol. 27 pp 117– (1989) · Zbl 0717.92024
[14] DOI: 10.1111/j.1442-1984.1993.tb00070.x
[15] DOI: 10.1086/286080
[16] Chesson P., The Functional Consequences of Biodiversity pp 213– (2001)
[17] DOI: 10.1007/s00442-004-1551-1
[18] Chesson P., Metacommunities: Spatial Dynamics and Eclogical Communities pp 279– (2005)
[19] DOI: 10.1007/BF00276097 · Zbl 0455.92012
[20] DOI: 10.1080/10236190410001652739 · Zbl 1071.39005
[21] DOI: 10.1163/002829679X00106
[22] DOI: 10.1006/tpbi.1994.1032 · Zbl 0846.92027
[23] DOI: 10.1016/0040-5809(92)90010-Q · Zbl 0757.92018
[24] DOI: 10.1046/j.1365-2656.2003.00743.x
[25] DOI: 10.1007/BF00277745
[26] DOI: 10.1007/BF00038701
[27] DOI: 10.1007/BF00290639 · Zbl 0717.92025
[28] DOI: 10.1088/0951-7715/17/4/014 · Zbl 1055.37071
[29] DOI: 10.1016/0040-5809(77)90042-9
[30] DOI: 10.1086/285705
[31] DOI: 10.1016/0040-5809(85)90014-0 · Zbl 0552.92018
[32] DOI: 10.1007/BF01239385
[33] DOI: 10.1038/46540
[34] DOI: 10.1890/0012-9658(2001)082[2682:BCFOAC]2.0.CO;2
[35] Johnson N. L., Distributions in Statistics: Continuous Multivariate Distributions (1972) · Zbl 0248.62021
[36] Karlin S., A First Course in Stochastic Processes, 2. ed. (1975) · Zbl 0315.60016
[37] DOI: 10.1086/523953
[38] Levin S. A., Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions pp 271– (1997)
[39] Levins R., Am. Sci. 54 pp 421– (1966)
[40] DOI: 10.1086/283527
[41] DOI: 10.2307/3012
[42] DOI: 10.1086/283544
[43] DOI: 10.1016/0040-5809(70)90039-0
[44] Marsden J. E., The Hopf Bifurcation and its Applications (1976)
[45] May R. M., Stability and complexity in model ecosystems, 2. ed. (1974)
[46] DOI: 10.1890/0012-9658(2006)87[1478:TSTSUP]2.0.CO;2
[47] DOI: 10.1046/j.1461-0248.2003.00397.x
[48] DOI: 10.1016/S0022-5193(84)80216-7
[49] DOI: 10.2307/2324783 · Zbl 0805.26015
[50] DOI: 10.1016/S0169-5347(99)01664-X
[51] DOI: 10.1016/0040-5809(76)90022-8 · Zbl 0352.92016
[52] DOI: 10.1016/S0040-5809(03)00072-8 · Zbl 1104.92053
[53] DOI: 10.1890/06-0645.1
[54] DOI: 10.1016/j.tpb.2007.03.009 · Zbl 1125.92060
[55] DOI: 10.1046/j.1461-0248.2003.00434.x
[56] DOI: 10.1086/424969
[57] DOI: 10.1016/S0169-5347(99)01684-5
[58] Tilman D., Resource Competition and Community Structure (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.