×

zbMATH — the first resource for mathematics

Adjoint-based error estimation and adaptive mesh refinement for the RANS and \(k-\omega\) turbulence model equations. (English) Zbl 1343.76044
Summary: We present the extension of the a posteriori error estimation and goal-oriented mesh refinement approach from laminar to turbulent flows, which are governed by the Reynolds-averaged Navier-Stokes and \(k\)-\(\omega\) turbulence model (RANS-\(k\omega\)) equations. In particular, we consider a discontinuous Galerkin discretization of the RANS-\(k\omega\) equations and use it within an adjoint-based error estimation and adaptive mesh refinement algorithm that targets the reduction of the discretization error in single as well as in multiple aerodynamic force coefficients. The accuracy of the error estimation and the performance of the goal-oriented mesh refinement algorithm is demonstrated for various test cases, including a two-dimensional turbulent flow around a three-element high lift configuration and a three-dimensional turbulent flow around a wing-body configuration.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76F65 Direct numerical and large eddy simulation of turbulence
Software:
deal.ii; DLR PADGE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bassi, F.; Crivellini, A.; Rebay, S.; Savini, M., Discontinuous Galerkin solution of the Reynolds-averaged navier – stokes and k−ω turbulence model equations, Comput. fluids, 34, 507-540, (2005) · Zbl 1138.76043
[2] F. Bassi, A. Crivellini, A. Ghidoni, S. Rebay, High-order discontinuous Galerkin discretization of transonic turbulent flows, in: 47th AIAA Aerospace Sciences Meeting, AIAA 2009-180, 2009.
[3] Fidkowski, K.J.; Darmofal, D.L., A triangular cut-cell adaptive method for high-order discretizations of the compressible navier – stokes equations, J. comput. phys., 225, 1653-1672, (2007) · Zbl 1343.76026
[4] Fidkowski, K.J.; Oliver, T.A.; Lu, J.; Darmofal, D.L., p-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible navier – stokes equations, J. comput. phys., 207, 92-113, (2005) · Zbl 1177.76194
[5] Luo, H.; Baum, J.D.; Löhner, R., A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids, J. comput. phys., 211, (2006) · Zbl 1138.76408
[6] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-112, 2006.
[7] B. Landmann, M. Kessler, S. Wagner, E. Krämer, A parallel discontinuous Galerkin code for the Navier-Stokes equations, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-111, 2006.
[8] Wang, L.; Mavriplis, D.J., Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2d compressible Euler equations, J. comput. phys., 228, 7643-7661, (2009) · Zbl 1391.76367
[9] Baumann, C.; Oden, J., A discontinuous hp finite element method for the Euler and navier – stokes equations, Int. J. numer. methods fluids, 31, 79-95, (1999) · Zbl 0985.76048
[10] Nastase, C.R.; Mavriplis, D.J., High-order discontinuous Galerkin methods using an hp-multigrid approach, J. comput. phys., 213, 330-357, (2006) · Zbl 1089.65100
[11] N. Kroll, ADIGMA - a European project on the development of adaptive higher-order variational methods for aerospace applications, in: 47th AIAA Aerospace Sciences Meeting, AIAA 2009-176, 2009.
[12] Becker, R.; Rannacher, R., A feed-back approach to error control in finite element methods: basic analysis and examples, East – west J. numer. math., 4, 237-264, (1996) · Zbl 0868.65076
[13] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta numer., 10, 1-102, (2001) · Zbl 1105.65349
[14] R. Hartmann, Adaptive Finite Element Methods for the Compressible Euler Equations, Ph.D. Thesis, University of Heidelberg, 2002. · Zbl 1010.76002
[15] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. comput. phys., 183, 508-532, (2002) · Zbl 1057.76033
[16] J. Lu, An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method, Ph.D. Thesis, M.I.T., 2005.
[17] Hartmann, R.; Houston, P., Symmetric interior penalty DG methods for the compressible navier – stokes equations II: goal – oriented a posteriori error estimation, Int. J. numer. anal. model., 3, 141-162, (2006) · Zbl 1152.76429
[18] Hartmann, R., Adaptive discontinuous Galerkin methods with shock-capturing for the compressible navier – stokes equations, Int. J. numer. methods fluids, 51, 1131-1156, (2006) · Zbl 1106.76041
[19] Venditti, D.A.; Darmofal, D.L., Grid adaptation for functional outputs: application to two-dimensional inviscid flows, J. comput. phys., 176, 40-69, (2002) · Zbl 1120.76342
[20] T. Leicht, Anisotropic mesh refinement for discontinuous Galerkin methods in aerodynamic flow simulations, Diploma Thesis, Dresden University of Technology, 2006. · Zbl 1388.76142
[21] Leicht, T.; Hartmann, R., Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations, Int. J. numer. methods fluids, 56, 2111-2138, (2008) · Zbl 1388.76142
[22] Leicht, T.; Hartmann, R., Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations, J. comput. phys., 229, 7344-7360, (2010) · Zbl 1425.76115
[23] T.A. Oliver, A high-order, adaptive, discontinuous Galerkin finite element method for the Reynolds-averaged Navier-Stokes equations, Ph.D. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2008.
[24] Formaggia, L.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation in computational fluid dynamics: application to the advection – diffusion – reaction and the Stokes problems, Appl. numer. math., 51, 511-533, (2004) · Zbl 1107.65098
[25] Micheletti, S.; Perotto, S., Output functional control for nonlinear equations driven by anisotropic mesh adaption. the navier – stokes equations, SIAM J. sci. comput., 30, 2817-2854, (2008) · Zbl 1400.49037
[26] Venditti, D.A.; Darmofal, D.L., Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. comput. phys., 187, 22-46, (2003) · Zbl 1047.76541
[27] Hartmann, R.; Houston, P., Goal-oriented a posteriori error estimation for multiple target functionals, (), 579-588 · Zbl 1064.65102
[28] Hartmann, R., Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM J. sci. comput., 31, 708-731, (2008) · Zbl 1404.76163
[29] M. Nemec, M.J. Aftosmis, Error estimation and adaptive refinement for embedded-boundary Cartesian meshes, in: 45th AIAA Aerospace Sciences Meeting, AIAA Paper 2007-4187, 2007.
[30] M. Nemec, M.J. Aftosmis, M. Wintzer, Adjoint-based adaptive mesh refinement for complex geometries, in: 46th AIAA Aerospace Sciences Meeting, AIAA Paper 2008-0725, 2008.
[31] Wilcox, D.C., Reassessment of the scale-determining equation for advanced turbulence models, Aiaa j., 26, 1299-1310, (1988) · Zbl 0664.76057
[32] Wilcox, D.C., Turbulence modeling for CFD, (1993), DCW Industries, Inc. La Canada, CA
[33] Ilinca, F.; Pelletier, D., Positivity preservation and adaptive solution for the k−&z.epsi; model of turbulence, Aiaa j., 36, 44-50, (1998) · Zbl 0904.76029
[34] Bassi, F.; Rebay, S., A high order discontinuous Galerkin method for compressible turbulent flows, (), 77-79 · Zbl 0991.76039
[35] Bassi, F.; Rebay, S., GMRES discontinuous Galerkin solution of the compressible navier – stokes equations, (), 197-208 · Zbl 0989.76040
[36] Bassi, F.; Rebay, S., Numerical evaluation of two discontinuous Galerkin methods for the compressible navier – stokes equations, Int. J. numer. methods fluids, 40, 197-207, (2002) · Zbl 1058.76570
[37] Hartmann, R.; Houston, P., An optimal order interior penalty discontinuous Galerkin discretization of the compressible navier – stokes equations, J. comput. phys., 227, 9670-9685, (2008) · Zbl 1359.76220
[38] Hartmann, R., Adjoint consistency analysis of discontinuous Galerkin discretizations, SIAM J. numer. anal., 45, 2671-2696, (2007) · Zbl 1189.76341
[39] Karniadakis, G.; Sherwin, S., Spectral/hp finite element methods in CFD, (1999), Oxford University Press · Zbl 0954.76001
[40] Šolín, P.; Segeth, K.; Doležel, I., Higher-order finite element methods, (2004), Chapman & Hall/CRC
[41] Menter, F.R., Two equation eddy-viscosity turbulence models for engineering applications, Aiaa j., 32, 1598-1605, (1994)
[42] Mulder, W.A.; van Leer, B., Experiments with implicit upwind methods for the Euler equations, J. comput. phys., 59, 232-246, (1985) · Zbl 0584.76014
[43] Essers, J.A.; Delanaye, M.; Rogiest, P., Upwind-biased finite volume technique solving navier – stokes equations on irregular meshes, Aiaa j., 33, (1995) · Zbl 0840.76068
[44] I. Fejtek, Summary of code validation results for a multiple element airfoil test case, in: 28th AIAA Fluid Dynamics Conference, AIAA Paper 97-1932, 1997.
[45] A. Hellsten, New two-equation turbulence model for aerodynamics applications, Technical Report, Report No. A-21, Helsinki University of Technology, Laboratory of Aerodynamics, 2004.
[46] I.R.M. Moir, Measurements on a two-dimensional aerofoil with high-lift devices, AGARD Advisory Report 303, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, 1994 (Test case A2).
[47] Hartmann, R.; Houston, P., Error estimation and adaptive mesh refinement for aerodynamic flows, () · Zbl 1042.76042
[48] Hartmann, R.; Held, J.; Leicht, T.; Prill, F., Discontinuous Galerkin methods for computational aerodynamics - 3D adaptive flow simulation with the DLR PADGE code, Aerosp. sci. technol., 14, 512-519, (2010)
[49] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II - a general purpose object oriented finite element library, ACM trans. math. softw., 33, 24:1-24:27, (2007) · Zbl 1365.65248
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.