×

zbMATH — the first resource for mathematics

Analysis of single particle diffusion with transient binding using particle filtering. (English) Zbl 1343.92143
Summary: Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic expectation-maximization (EM) algorithm.

MSC:
92C40 Biochemistry, molecular biology
92C05 Biophysics
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
Software:
astsa
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ayloo, S., Lazarus, J.E., Dodda, A., Tokito, M., Ostap, E.M., Holzbaur, E.L., 2014. Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nat. Commun. 5.
[2] Bosch, P. J.; Kanger, J. S.; Subramaniam, V., Classification of dynamical diffusion states in single molecule tracking microscopy, Biophys. J., 107, 3, 588-598, (2014)
[3] Bouzigues, C.; Dahan, M., Transient directed motions of gaba a receptors in growth cones detected by a speed correlation index, Biophys. J., 92, 2, 654-660, (2007)
[4] Cairo, C. W.; Mirchev, R.; Golan, D. E., Cytoskeletal regulation couples lfa-1 conformational changes to receptor lateral mobility and clustering, Immunity, 25, 2, 297-308, (2006)
[5] Cairo, C. W.; Das, R.; Albohy, A.; Baca, Q. J.; Pradhan, D.; Morrow, J. S.; Coombs, D.; Golan, D. E., Dynamic regulation of cd45 lateral mobility by the spectrin-ankyrin cytoskeleton of t cells, J. Biol. Chem., 285, 15, 11392-11401, (2010)
[6] Cappé, O.; Moulines, E.; Rydén, T., Inference in Hidden Markov Models, vol. 6, (2005), Springer, New York, NY · Zbl 1080.62065
[7] Chodera, J.D., Elms, P., Noé, F., Keller, B., Kaiser, C.M., Ewall-Wice, A., Marqusee, S., Bustamante, C., Hinrichs, N.S., 2011. Bayesian hidden Markov model analysis of single-molecule force spectroscopy: characterizing kinetics under measurement uncertainty, arXiv preprint arXiv:1108.1430.
[8] Costa Filho, R. N.; Alencar, G.; Skagerstam, B.-S.; Andrade, J. S., Morse potential derived from first principles, EPL (Europhys. Lett.), 101, 1, 10009, (2013)
[9] Das, R.; Cairo, C. W.; Coombs, D., A hidden Markov model for single particle tracks quantifies dynamic interactions between lfa-1 and the actin cytoskeleton, PLoS Comput. Biol., 5, 11, e1000556, (2009)
[10] Delgado-Gonzalo, R., Chenouard, N., Unser, M., 2011. A new hybrid Bayesian-variational particle filter with application to mitotic cell tracking. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, pp. 1917-1920.
[11] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B: Methodol., 1-38, (1977) · Zbl 0364.62022
[12] Douc, R., Cappé, O., 2005. Comparison of resampling schemes for particle filtering. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. ISPA 2005. IEEE, pp. 64-69.
[13] Doucet, A.; De Freitas, N.; Gordon, N., An introduction to sequential Monte Carlo methods, (2001), Springer, New York, NY · Zbl 1056.93576
[14] Durbin, J.; Koopman, S. J., Time Series Analysis by State Space Methods, vol. 38, (2012), Oxford University Press, Oxford, United Kingdom · Zbl 1270.62120
[15] Elliott, L. C.; Barhoum, M.; Harris, J. M.; Bohn, P. W., Trajectory analysis of single molecules exhibiting non-Brownian motion, Phys. Chem. Chem. Phys., 13, 10, 4326-4334, (2011)
[16] Elms, P. J.; Chodera, J. D.; Bustamante, C.; Marqusee, S., The molten globule state is unusually deformable under mechanical force, Proc. Natl. Acad. Sci., 109, 10, 3796-3801, (2012)
[17] Frühwirth-Schnatter, S., Finite mixture and Markov switching models, (2006), Springer Science & Business Media, New York, NY · Zbl 1108.62002
[18] Fujiwara, T.; Ritchie, K.; Murakoshi, H.; Jacobson, K.; Kusumi, A., Phospholipids undergo hop diffusion in compartmentalized cell membrane, J. Cell Biol., 157, 6, 1071-1082, (2002)
[19] Gennis, R. B., Biomembranes: molecular structure and function, (1989), Springer-Verlag New York
[20] Godinez, W. J.; Lampe, M.; Wörz, S.; Müller, B.; Eils, R.; Rohr, K., Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences, Med. Image Anal., 13, 2, 325-342, (2009)
[21] Gordon, N.J., Salmond, D.J., Smith, A.F., 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings F (Radar and Signal Processing), vol. 140. IET, pp. 107-113.
[22] Hamilton, J. D., Analysis of time series subject to changes in regime, J. Economet., 45, 1, 39-70, (1990) · Zbl 0723.62050
[23] Helmuth, J. A.; Burckhardt, C. J.; Koumoutsakos, P.; Greber, U. F.; Sbalzarini, I. F., A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells, J. Struct. Biol., 159, 3, 347-358, (2007)
[24] Hürzeler, M., Künsch, H.R., 2001. Approximating and maximising the likelihood for a general state-space model. In: Sequential Monte Carlo Methods in Practice. Springer, New York, NY, pp. 159-175.
[25] Huys, Q.; Paninski, L., Smoothing of, and parameter estimation from, noisy biophysical recordings, PLoS Comput. Biol., 5, 5, e1000379, (2009)
[26] Jacobson, K.; Ishihara, A.; Inman, R., Lateral diffusion of proteins in membranes, Annu. Rev. Physiol., 49, 1, 163-175, (1987)
[27] Janczura, J.; Weron, R., Efficient estimation of Markov regime-switching modelsan application to electricity spot prices, AStA Adv. Stat. Anal., 96, 3, 385-407, (2012) · Zbl 1443.62471
[28] Joo, C.; Balci, H.; Ishitsuka, Y.; Buranachai, C.; Ha, T., Advances in single-molecule fluorescence methods for molecular biology, Annu. Rev. Biochem., 77, 51-76, (2008)
[29] Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J.M., 2009. An overview of sequential monte carlo methods for parameter estimation in general state-space models. In: 15th IFAC Symposium on System Identification (SYSID), Saint-Malo, France (invited paper), vol. 102, p. 117.
[30] Kim, C.-J., Dynamic linear models with Markov-switching, J. Economet., 60, 1, 1-22, (1994) · Zbl 0795.62104
[31] Kim, C.-J., Nelson, C.R., 1999. State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications. MIT Press, Cambridge, MA.
[32] Kim, J.; Stoffer, D. S., Fitting stochastic volatility models in the presence of irregular sampling via particle methods and the EM algorithm, J. Time Ser. Anal., 29, 5, 811-833, (2008) · Zbl 1199.62042
[33] Kitagawa, G., Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Stat., 5, 1, 1-25, (1996)
[34] Kusumi, A.; Sako, Y.; Yamamoto, M., Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). effects of calcium-induced differentiation in cultured epithelial cells, Biophys. J., 65, 5, 2021-2040, (1993)
[35] Kusumi, A.; Nakada, C.; Ritchie, K.; Murase, K.; Suzuki, K.; Murakoshi, H.; Kasai, R. S.; Kondo, J.; Fujiwara, T., Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluidhigh-speed single-molecule tracking of membrane molecules, Annu. Rev. Biophys. Biomol. Struct., 34, 351-378, (2005)
[36] Lettinga, M. P.; Grelet, E., Self-diffusion of rodlike viruses through smectic layers, Phys. Rev. Lett., 99, 19, 197802, (2007)
[37] Liechty, J. C.; Roberts, G. O., Markov chain Monte Carlo methods for switching diffusion models, Biometrika, 88, 2, 299-315, (2001) · Zbl 0984.62060
[38] Marty, G.; Dauchot, O., Subdiffusion and cage effect in a sheared granular material, Phys. Rev. Lett., 94, 1, 015701, (2005)
[39] McLachlan, G.; Krishnan, T., The EM Algorithm and Extensions, vol. 382, (2007), John Wiley & Sons, Hoboken, NJ
[40] Meilhac, N.; Le Guyader, L.; Salome, L.; Destainville, N., Detection of confinement and jumps in single-molecule membrane trajectories, Phys. Rev. E, 73, 1, 011915, (2006)
[41] Metzler, R.; Klafter, J., Subdiffusive transport close to thermal equilibriumfrom the Langevin equation to fractional diffusion, Phys. Rev. E, 61, 6, 6308, (2000)
[42] Michalet, X., Mean square displacement analysis of single-particle trajectories with localization Errorbrownian motion in an isotropic medium, Phys. Rev. E, 82, 4, 041914, (2010)
[43] Montiel, D.; Cang, H.; Yang, H., Quantitative characterization of changes in dynamical behavior for single-particle tracking studies, J. Phys. Chem. B, 110, 40, 19763-19770, (2006)
[44] Ott, M.; Shai, Y.; Haran, G., Single-particle tracking reveals switching of the hiv fusion peptide between two diffusive modes in membranes, J. Phys. Chem. B, 117, 42, 13308-13321, (2013)
[45] Persson, F.; Lindén, M.; Unoson, C.; Elf, J., Extracting intracellular diffusive states and transition rates from single-molecule tracking data, Nat. Methods, 10, 3, 265-269, (2013)
[46] Poyiadjis, G.; Doucet, A.; Singh, S. S., Particle approximations of the score and observed information matrix in state space models with application to parameter estimation, Biometrika, 98, 1, 65-80, (2011) · Zbl 1214.62093
[47] Qian, H.; Kou, S. C., Statistics and related topics in single-molecule biophysics, Annu. Rev. Stat. Appl., 1, 465, (2014)
[48] Qian, H.; Sheetz, M. P.; Elson, E. L., Single particle tracking. analysis of diffusion and flow in two-dimensional systems, Biophys. J., 60, 4, 910-921, (1991)
[49] Rabiner, L., A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77, 2, 257-286, (1989)
[50] Särkkä, S., Bayesian Filtering and Smoothing, vol. 3, (2013), Cambridge University Press, Cambridge, United Kingdom · Zbl 1274.62021
[51] Saxton, M. J., Single-particle trackingmodels of directed transport, Biophys. J., 67, 5, 2110-2119, (1994)
[52] Saxton, M. J., A biological interpretation of transient anomalous subdiffusion. I. qualitative model, Biophys. J., 92, 4, 1178-1191, (2007)
[53] Saxton, M. J.; Jacobson, K., Single-particle trackingapplications to membrane dynamics, Annu. Rev. Biophys. Biomol. Struct., 26, 1, 373-399, (1997)
[54] Shen, H.; Nelson, G.; Kennedy, S.; Nelson, D.; Johnson, J.; Spiller, D.; White, M. R.; Kell, D. B., Automatic tracking of biological cells and compartments using particle filters and active contours, Chemomet. Intell. Lab. Syst., 82, 1, 276-282, (2006)
[55] Shumway, R.; Stoffer, D., Dynamic linear models with switching, J. Am. Stat. Assoc., 86, 415, 763-769, (1991)
[56] Shumway, R. H.; Stoffer, D. S., Time series analysis and its applications: with R examples, (2010), Springer, New York, NY · Zbl 0502.62085
[57] Simson, R.; Sheets, E. D.; Jacobson, K., Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis, Biophys. J., 69, 3, 989-993, (1995)
[58] Smal, I.; Draegestein, K.; Galjart, N.; Niessen, W.; Meijering, E., Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis, IEEE Trans. Med. Imaging, 27, 6, 789-804, (2008)
[59] Smal, I.; Meijering, E.; Draegestein, K.; Galjart, N.; Grigoriev, I.; Akhmanova, A.; Van Royen, M.; Houtsmuller, A. B.; Niessen, W., Multiple object tracking in molecular bioimaging by Rao-blackwellized marginal particle filtering, Med. Image Anal., 12, 6, 764-777, (2008)
[60] Thurner, P.; Gsandtner, I.; Kudlacek, O.; Choquet, D.; Nanoff, C.; Freissmuth, M.; Zezula, J., A two-state model for the diffusion of the a2a adenosine receptor in hippocampal neurons agonist-induced switch to slow mobility is modified by synapse-associated protein 102 (sap102), J. Biol. Chem., 289, 13, 9263-9274, (2014)
[61] Weeks, E. R.; Weitz, D., Properties of cage rearrangements observed near the colloidal Glass transition, Phys. Rev. Lett., 89, 9, 095704, (2002)
[62] Wei, G. C.; Tanner, M. A., A Monte Carlo implementation of the EM algorithm and the poor Man’s data augmentation algorithms, J. Am. Stat. Assoc., 85, 411, 699-704, (1990)
[63] Wu, C. J., On the convergence properties of the EM algorithm, Ann. Stat., 95-103, (1983) · Zbl 0517.62035
[64] Yoon, J. W.; Bruckbauer, A.; Fitzgerald, W. J.; Klenerman, D., Bayesian inference for improved single molecule fluorescence tracking, Biophys. J., 94, 12, 4932-4947, (2008)
[65] Zhang, F.; Crise, B.; Su, B.; Hou, Y.; Rose, J. K.; Bothwell, A.; Jacobson, K., Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteinstoward establishing rules governing the lateral mobility of membrane proteins, J. Cell Biol., 115, 1, 75-84, (1991)
[66] Zhang, F.; Lee, G. M.; Jacobson, K., Protein lateral mobility as a reflection of membrane microstructure, Bioessays, 15, 9, 579-588, (1993)
[67] Zucchini, W.; MacDonald, I. L., Hidden Markov models for time series: an introduction using R, (2009), CRC Press, Boca Raton, FL · Zbl 1180.62130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.