×

Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy. (English) Zbl 1343.92285

Summary: Highly active antiretroviral therapy can suppress plasma viral loads of HIV-1 infected individuals to below the detection limit of standard clinical assays. However, low-level viremia still persists. Many patients also have transient viral load measurements above the detection limit (the so-called viral blips). The latent reservoir consisting of latently infected CD4+ T cells represents a major obstacle to HIV-1 eradication. These cells can be activated to produce virions but the size of the latent reservoir is relatively stable. The mechanisms underlying low viral load persistence, emergence of intermittent viral blips and stability of the latent reservoir are not well understood. Cellular and viral transcription factors play an important role in the establishment and maintenance of HIV-1 latency. Infected cells with intermediate transcriptional activities may either revert to a latent state or become highly activated and produce virions due to intracellular perturbations. Here we develop a mathematical model that includes such stochastic population switch. We demonstrate that the model can generate a stable latent reservoir, intermittent viral blips, as well as low-level viremia persistence. Latently infected cells with intermediate transcription activities may maintain their size through a high level of homeostatic proliferation, while cells with low transcriptional activities are likely to be maintained through the reversion from cells with intermediate transcription activities. Simulations also suggest that treatment intensification or activation therapy may not help to eradicate the latent reservoir. Blocking the proliferation of latently infected cells might be a good strategy. These results provide more insights into the long-term dynamics of virus and latently infected cells in HIV patients on suppressive therapy and may help to develop novel treatment strategies.

MSC:

92C60 Medical epidemiology
92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmed, R.; Gray, D., Immunological memory and protective immunity: understanding their relation, Science, 272, 54-60 (1996)
[2] Alpdogan, Ö.; Muriglan, S. J.; Eng, J. M.; Willis, L. M.; Greenberg, A. S., IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation, J. Clin. Invest., 112, 1095-1107 (2003)
[3] Althaus, C. L.; De Boer, R. J., Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy, Mol. Syst. Biol., 6, 348 (2010)
[4] Archin, N. M.; Liberty, A. L.; Kashuba, A. D.; Choudhary, S. K.; Kuruc, J. D., Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy, Nature, 487, 482-485 (2012)
[5] Archin, N. M.; Vaidya, N. K.; Kuruc, J. D.; Liberty, A. L.; Wiegand, A., Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection, Proc. Natl. Acad. Sci. U. S. A., 109, 9523-9528 (2012)
[6] Bailey, J. R.; Sedaghat, A. R.; Kieffer, T.; Brennan, T.; Lee, P. K., Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells, J. Virol., 80, 6441-6457 (2006)
[7] Barton, K. M.; Burch, B. D.; Soriano-Sarabia, N.; Margolis, D. M., Prospects for treatment of latent HIV, Clin. Pharmacol. Ther., 93, 46-56 (2013)
[8] Beans, E. J.; Fournogerakis, D.; Gauntlett, C.; Heumann, L. V.; Kramer, R., Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo, Proc. Natl. Acad. Sci. U. S. A., 110, 11698-11703 (2013)
[9] Bedoya, L. M.; Marquez, N.; Martinez, N.; Gutierrez-Eisman, S.; Alvarez, A., SJ23B, a jatrophane diterpene activates classical PKCs and displays strong activity against HIV in vitro, Biochem. Pharmacol., 77, 965-978 (2009)
[10] Blankson, J. N.; Persaud, D.; Siliciano, R. F., The challenge of viral reservoirs in HIV-1 infection, Annu. Rev. Med., 53, 557-593 (2002)
[11] Bofill, M.; Janossy, G.; Lee, C.; MacDonald‐Burns, D.; Phillips, A., Laboratory control values for CD4 and CD8 T lymphocytes. Implications for HIV‐1 diagnosis, Clin. Exp. Immunol., 88, 243-252 (1992)
[12] Bosque, A.; Famiglietti, M.; Weyrich, A. S.; Goulston, C.; Planelles, V., Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells, PLoS Pathog., 7, e1002288 (2011)
[13] Chomont, N.; El-Far, M.; Ancuta, P.; Trautmann, L.; Procopio, F. A., HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat. Med., 15, 893-900 (2009)
[14] Choudhary, S. K.; Archin, N. M.; Margolis, D. M., Hexamethylbisacetamide and disruption of human immunodeficiency virus type 1 latency in CD4(+) T cells, J. Infect. Dis., 197, 1162-1170 (2008)
[15] Chun, T. W.; Fauci, A. S., HIV reservoirs: pathogenesis and obstacles to viral eradication and cure, Acquir. Immune Defic. Syndr., 26, 1261-1268 (2012)
[16] Chun, T. W.; Murray, D.; Justement, J. S.; Hallahan, C. W.; Moir, S., Relationship between residual plasma viremia and the size of HIV proviral DNA reservoirs in infected individuals receiving effective antiretroviral therapy, J. Infect. Dis., 204, 135-138 (2011)
[17] Conway, J. M.; Coombs, D., A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients, PLoS Comput. Biol., 7, e1002033 (2011)
[18] De Boer, R. J.; Homann, D.; Perelson, A. S., Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection, J. Immunol., 171, 3928-3935 (2003)
[19] DeChristopher, B. A.; Loy, B. A.; Marsden, M. D.; Schrier, A. J.; Zack, J. A., Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro, Nat. Chem., 4, 705-710 (2012)
[20] Dinoso, J.; Kim, S.; Wiegand, A.; Palmer, S.; Gange, S., Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy, Proc. Natl. Acad. Sci. U. S. A., 106, 9403-9408 (2009)
[21] Donahue, D. A.; Wainberg, M. A., Cellular and molecular mechanisms involved in the establishment of HIV-1 latency, Retrovirology, 10, 11 (2013)
[22] Donahue, D. A.; Kuhl, B. D.; Sloan, R. D.; Wainberg, M. A., The viral protein Tat can inhibit the establishment of HIV-1 latency, J. Virol., 86, 3253-3263 (2012)
[23] Dornadula, G.; Zhang, H.; VanUitert, B.; Stern, J.; Livornese, L., Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy, J. Am. Med. Assoc., 282, 1627-1632 (1999)
[24] Eisele, E.; Siliciano, R. F., Redefining the viral reservoirs that prevent HIV-1 eradication, Immunity, 37, 377-388 (2012)
[25] Forde, J.; Volpe, J. M.; Ciupe, S. M., Latently infected cell activation: a way to reduce the size of the HIV reservoir?, Bull. Math. Biol., 74, 1651-1672 (2012) · Zbl 1251.92020
[26] Fraser, C.; Ferguson, N. M.; de Wolf, F.; Anderson, R. M., The role of antigenic stimulation and cytotoxic T cell activity in regulating the long-term immunopathogenesis of HIV: mechanisms and clinical implications, Proc. R. Soc. Lond. B: Biol. Sci., 268, 2085-2095 (2001)
[27] Gandhi, R. T.; Zheng, L.; Bosch, R. J.; Chan, E. S.; Margolis, D. M., The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial, PLoS Med., 7, e1000321 (2010)
[28] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340-2361 (1977)
[29] Goldrath, A. W.; Bogatzki, L. Y.; Bevan, M. J., Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation, J. Exp. Med., 192, 557-564 (2000)
[30] Greub, G.; Cozzi-Lepri, A.; Ledergerber, B.; Staszewski, S.; Perrin, L., Intermittent and sustained low-level HIV viral rebound in patients receiving potent antiretroviral therapy, Acquir. Immune Defic. Syndr., 16, 1967-1969 (2002)
[31] Haase, A. T.; Henry, K.; Zupancic, M.; Sedgewick, G.; Faust, R. A., Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274, 985-989 (1996)
[32] Hatano, H.; Hayes, T. L.; Dahl, V.; Sinclair, E.; Lee, T. H., A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response, J. Infect. Dis., 203, 960-968 (2011)
[33] Havlir, D. V.; Bassett, R.; Levitan, D.; Gilbert, P.; Tebas, P., Prevalence and predictive value of intermittent viremia with combination hiv therapy, J. Am. Med. Assoc., 286, 171-179 (2001)
[34] Heffernan, J. M.; Wahl, L. M., Monte Carlo estimates of natural variation in HIV infection, J. Theor. Biol., 236, 137-153 (2005) · Zbl 1442.92167
[35] Hockett, R. D.; Kilby, J. M.; Derdeyn, C. A.; Saag, M. S.; Sillers, M., Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA, J. Exp. Med., 189, 1545-1554 (1999)
[36] Homann, D.; Teyton, L.; Oldstone, M. B., Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory, Nat. Med., 7, 913-919 (2001)
[37] Jones, L. E.; Perelson, A. S., Modeling the effects of vaccination on chronically infected HIV-positive patients, J. Acquir. Immune Defic. Syndr., 31, 369-377 (2002)
[38] Jones, L. E.; Perelson, A. S., Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART, Bull. Math. Biol., 67, 1227-1251 (2005) · Zbl 1334.92407
[39] Jones, L. E.; Perelson, A. S., Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy, J. Acquir. Immune. Defic. Syndr., 45, 483-493 (2007)
[40] Karn, J., Tackling Tat, J. Mol. Biol., 293, 235-254 (1999)
[41] Katlama, C.; Deeks, S. G.; Autran, B.; Martinez-Picado, J.; van Lunzen, J., Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs, Lancet, 381, 2109-2117 (2013)
[42] Kim, H.; Perelson, A. S., Viral and latent reservoir persistence in HIV-1-infected patients on therapy, PLoS Comput. Biol., 2, e135 (2006)
[43] Kim, H.; Yin, J., Robust growth of human immunodeficiency virus type 1 (HIV-1), Biophys. J., 89, 2210-2221 (2005)
[44] Kulkosky, J.; Bray, S., HAART-persistent HIV-1 latent reservoirs: their origin, mechanisms of stability and potential strategies for eradication, Curr. HIV Res., 4, 199-208 (2006)
[45] Lee, P. K.; Kieffer, T. L.; Siliciano, R. F.; Nettles, R. E., HIV-1 viral load blips are of limited clinical significance, J. Antimicrob. Chemother., 57, 803-805 (2006)
[46] Maldarelli, F.; Palmer, S.; King, M. S.; Wiegand, A.; Polis, M. A., ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia, PLoS Pathog., 3, e46 (2007)
[47] Markowitz, M.; Louie, M.; Hurley, A.; Sun, E.; Di Mascio, M., A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77, 5037-5038 (2003)
[48] Marquez, N.; Calzado, M. A.; Sanchez-Duffhues, G.; Perez, M.; Minassi, A., Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation, Biochem. Pharmacol., 75, 1370-1380 (2008)
[49] Di Mascio, M.; Markowitz, M.; Louie, M.; Hogan, C.; Hurley, A., Viral blip dynamics during highly active antiretroviral therapy, J. Virol., 77, 12165-12172 (2003)
[50] McMahon, D.; Jones, J.; Wiegand, A.; Gange, S. J.; Kearney, M., Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy, Clin. Infect. Dis., 50, 912-919 (2010)
[51] Mclean, A. R.; Michie, C. A., In vivo estimates of division and death rates of human T lymphocytes, Proc. Natl. Acad. Sci. U. S. A., 92, 3707-3711 (1995)
[52] Mira, J. A.; Macias, J.; Nogales, C.; Fernandez-Rivera, J.; Garcia-Garcia, J. A., Transient rebounds of low-level viraemia among HIV-infected patients under HAART are not associated with virological or immunological failure, Antivir. Ther., 7, 251-256 (2002)
[53] Mohri, H.; Bonhoeffer, S.; Monard, S.; Perelson, A. S.; Ho, D. D., Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279, 1223-1227 (1998)
[54] Nettles, R. E.; Kieffer, T. L.; Kwon, P.; Monie, D.; Han, Y., Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART, J. Am. Med. Assoc., 293, 817-829 (2005)
[55] Palmer, S.; Maldarelli, F.; Wiegand, A.; Bernstein, B.; Hanna, G. J., Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy, Proc. Natl. Acad. Sci. U. S. A., 105, 3879-3884 (2008)
[56] Perelson, A. S.; Kirschner, D. E.; De Boer, R., Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114, 81-125 (1993) · Zbl 0796.92016
[57] Perelson, A. S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 188-191 (1997)
[58] Ramratnam, B.; Bonhoeffer, S.; Binley, J.; Hurley, A.; Zhang, L., Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet, 354, 1782-1785 (1999)
[59] Ramratnam, B.; Mittler, J. E.; Zhang, L.; Boden, D.; Hurley, A., The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy, Nat. Med., 6, 82-85 (2000)
[60] Ramratnam, B.; Ribeiro, R.; He, T.; Chung, C.; Simon, V., Intensification of antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and decreases, but does not eliminate, ongoing virus replication, J. Acquir. Immune Defic. Syndr., 35, 33-37 (2004)
[61] Rong, L.; Perelson, A. S., Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol., 260, 308-331 (2009) · Zbl 1402.92409
[62] Rong, L.; Perelson, A. S., Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 217, 77-87 (2009) · Zbl 1158.92028
[63] Rong, L.; Perelson, A. S., Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol., 5, e1000533 (2009)
[64] Sedaghat, A. R.; Siliciano, J. D.; Brennan, T. P.; Wilke, C. O.; Siliciano, R. F., Limits on replenishment of the resting CD4+ T cell reservoir for HIV in patients on HAART, PLoS Pathog., 3, e122 (2007)
[65] Sharkey, M. E.; Teo, I.; Greenough, T.; Sharova, N.; Luzuriaga, K., Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy, Nat. Med., 6, 76-81 (2000)
[66] Sigal, A.; Kim, J. T.; Balazs, A. B.; Dekel, E.; Mayo, A., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477, 95-98 (2011)
[67] Siliciano, J. D.; Kajdas, J.; Finzi, D.; Quinn, T. C.; Chadwick, K., Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells, Nat. Med., 9, 727-728 (2003)
[68] Sklar, P. A.; Ward, D. J.; Baker, R. K.; Wood, K. C.; Gafoor, Z., Prevalence and clinical correlates of HIV viremia (‘blips’) in patients with previous suppression below the limits of quantification, Acquir. Immune Defic. Syndr., 16, 2035-2041 (2002)
[69] Srivastava, R.; You, L.; Summers, J.; Yin, J., Stochastic vs. deterministic modeling of intracellular viral kinetics, J. Theor. Biol., 218, 309-321 (2002)
[70] Strain, M. C.; Gunthard, H. F.; Havlir, D. V.; Ignacio, C. C.; Smith, D. M., Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: intrinsic stability predicts lifelong persistence, Proc. Natl. Acad. Sci. U. S. A., 100, 4819-4824 (2003)
[71] Tobin, N. H.; Learn, G. H.; Holte, S. E.; Wang, Y.; Melvin, A. J., Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus, J. Virol., 79, 9625-9634 (2005)
[72] van der Sluis, R. M.; van Montfort, T.; Pollakis, G.; Sanders, R. W.; Speijer, D., Dendritic cell-induced activation of latent HIV-1 provirus in actively proliferating primary T lymphocytes, PLoS Pathog., 9, e1003259 (2013)
[73] Weinberger, L. S.; Burnett, J. C.; Toettcher, J. E.; Arkin, A. P.; Schaffer, D. V., Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity, Cell, 122, 169-182 (2005)
[74] Weinberger, L. S.; Dar, R. D.; Simpson, M. L., Transient-mediated fate determination in a transcriptional circuit of HIV, Nat. Genet., 40, 466-470 (2008)
[75] Winston, W. M.; Molodowitch, C.; Hunter, C. P., Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1, Science, 295, 2456-2459 (2002)
[76] Yang, H. C.; Shen, L.; Siliciano, R. F.; Pomerantz, J. L., Isolation of a cellular factor that can reactivate latent HIV-1 without T cell activation, Proc. Natl. Acad. Sci. U. S. A., 106, 6321-6326 (2009)
[77] Yukl, S. A.; Shergill, A. K.; McQuaid, K.; Gianella, S.; Lampiris, H., Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy, Acquir. Immune Defic. Syndr., 24, 2451-2460 (2010)
[78] Zhang, H., Reversal of HIV-1 latency with anti-microRNA inhibitors, Int. J. Biochem. Cell Biol., 41, 451-454 (2009)
[79] Zhang, J.; Perelson, A. S., Contribution of follicular dendritic cells to persistent HIV viremia, J. Virol., 87, 7893-7901 (2013)
[80] Zhang, W.; Wahl, L. M.; Yu, P., Conditions for transient viremia in deterministic in-host models: Viral blips need no exogenous trigger, SIAM J. Appl. Math., 73, 853-881 (2013) · Zbl 1267.92051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.