×

New weakly periodic Gibbs measures of Ising model on Cayley tree. (English. Russian original) Zbl 1344.60097

Russ. Math. 59, No. 11, 45-53 (2015); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2015, No. 11, 54-63 (2015).
The article considers the Ising model on a regular tree \(T=(V,E)\) of degree \(k+1\), under the presence of a magnetic field \(h=(h_x)_{x\in V}\). Given the field, one can define Ising measures in finite volume, \(\mu_n\), supported on the ball \(V_n\) of radius \(n\) (without boundary condition), and they satisfy concordance if the marginal of \(\mu_n\) on \(V_{n-1}\) coincides with \(\mu_{n-1}\); in this case, one can extend the \(\mu_n\) into an infinite-volume Gibbs measure. Classifying the Gibbs measures obtained using the above construction and that are invariant under the action of a subgroup \(H\) of automorphism is then a natural question.
The concordance can be rewritten into compatibility relations satisfied by the field \(h\) at each vertex, and which depend on the temperature. The invariance of \(\mu\) under the action of \(H\) then transforms into that of \(h\), and the question becomes the existence of solutions to the compatibility relations that are themselves invariant under \(H\).
The article studies that question, and constructs such invariant solutions (and the associated Gibbs measures) in the case where \(H\) is of index \(2\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
05C05 Trees
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rozikov, U. A. Gibbs Measures on Cayley Trees (World Scientific Publ. Co. Pte. Ltd, Hackensack, NJ, 2013). · Zbl 1278.82002 · doi:10.1142/8841
[2] Blekher, P. M., Ganikhodzhaev, N. N. “On Pure Phases of the Ising Model on the Bethe Lattice,” Theory Probab. Appl. 35, No. 2, 216-227 (1990). · Zbl 0715.60122 · doi:10.1137/1135031
[3] Zachary, S. “Countable State Space Markov Random Fields and Markov Chains on Trees,” Ann. Prob. 11, No. 4, 894-903 (1983). · Zbl 0524.60056 · doi:10.1214/aop/1176993439
[4] Ganikhodzhaev N. N., Rozikov, U. A. “Description of Extreme Periodic Gibbs Measures of Some Lattice Models on Cayley Tree,” Theor. Math. Phys. 111, No. 1, 480-486 (1997). · Zbl 0964.82504 · doi:10.1007/BF02634202
[5] Gandolfo, D., Ruiz, J., Shlosman, S. “AManifold of Pure Gibbs States of the Ising Model on a Cayley Tree,” J. Stat. Phys. 148, No. 6, 999-1005 (2012). · Zbl 1254.82008 · doi:10.1007/s10955-012-0574-y
[6] Rozikov, U. A. “Partition Structures of the Group Representation of the Cayley Tree into Cosets by Finite- Index Normal Subgroups and Their Applications to the Description of Periodic Gibbs Distributions,” Theor. Math. Phys. 112, No. 1, 929-933 (1997). · Zbl 0978.82506 · doi:10.1007/BF02634109
[7] Rozikov, U. A., Rakhmatullaev, M.M. “Description ofWeakly Periodic Gibbs Measures for the IsingModel on a Cayley Tree,” Theor. Math. Phys. 156, No. 2, 1218-1227 (2008). · Zbl 1157.82311 · doi:10.1007/s11232-008-0091-y
[8] Rozikov, U. A., Rakhmatullaev, M. M. “Weakly Periodic Ground States and Gibbs Measures for the Ising Model with Competing Interactions on the Cayley Tree,” Theor. Math. Phys. 160, No. 3, 1292-1300 (2009). · Zbl 1180.82034 · doi:10.1007/s11232-009-0116-1
[9] Rozikov, U. A., Rakhmatullaev, M. M. “On Weakly Periodic Gibbs Measures of Ising Model on a Cayley Tree,” Dokl. AN RUz 4, 12-15 (2008) [in Russian]. · Zbl 1157.82311
[10] Rozikov, U. A., Rakhmatullaev, M. M. “New Gibbs Measures of Ising Model on a Cayley Tree,” Uzb. Mat. Zh. 2, 144-152 (2009) [in Russian]. · Zbl 1180.82034
[11] Rozikov, U. A. “Construction of an Uncountable Number of LimitingGibbsMeasures in the Inhomogeneous IsingModel,” Theor. Math. Phys. 118, No. 1, 77-84 (1999). · Zbl 0957.82007 · doi:10.1007/BF02557197
[12] Ganikhodzhaev, N. N. “Group Representation and Automorphisms on a Cayley Tree,” Dokl. AN RUz 4, 3-5 (1994) [in Russian].
[13] Sinai, Ya. G. Theory of Phase Transitions. Rigorous Results (Nauka, Moscow, 1980).
[14] Preston, C. Gibbs States on Countable Sets (Cambridge Univ. Press, 1974). · Zbl 0297.60054 · doi:10.1017/CBO9780511897122
[15] Malyshev, V. A., Minlos, R. A. Random Gibbs Fields (Nauka, Moscow, 1985) [in Russian]. · Zbl 0584.60062
[16] Ruelle, D. Statistical Mechanics (W. A. Benjamin, Inc., New York—Amsterdam, 1969; Mir, Moscow, 1971).
[17] De Jongh, L. J., Miedema, A. R. “Experiments on SimpleMagnetic Model Systems,” Adv. Phys. 23, No. 1, 1-260 (1974). · doi:10.1080/00018739700101558
[18] Feynman R. Statistical Mechanics (Mir, Moscow, 1978) [Russian translation]
[19] Kasteleyn, P. W., Phase Transitions (1968) · Zbl 0165.29103
[20] Zimm, B., Doty, P., Iso, K. “Determination of the Parameters for Helix Formation in Poly-γ-Benzyl-LGlutamate,” Proc. Nat. Acad. Sci. USA 45, 1601-1607 (1959). · doi:10.1073/pnas.45.11.1601
[21] Huang K. Statistical Mechanics (Mir, Moscow, 1966) [Russian translation].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.