×

zbMATH — the first resource for mathematics

Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. (English) Zbl 1344.81024
Summary: We provide algorithms for symbolic integration of hyperlogarithms multiplied by rational functions, which also include multiple polylogarithms when their arguments are rational functions. These algorithms are implemented in Maple and we discuss in particular their application to the computation of Feynman integrals.

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81-08 Computational methods for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Risch, R. H., The problem of integration in finite terms, Trans. Amer. Math. Soc., 139, 167-189, (1969), URL http://www.jstor.org/stable/1995313 · Zbl 0184.06702
[2] Bronstein, M., (Symbolic Integration I: Transcendental Functions, Algorithms and Computation in Mathematics, vol. 1, (2005), Springer Berlin) · Zbl 1059.12002
[3] Goncharov, A. B., Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5, 4, 497-516, (1998) · Zbl 0961.11040
[4] Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; Lisoněk, P., Special values of multiple polylogarithms, Trans. Amer. Math. Soc., 353, 3, 907-941, (2001) · Zbl 1002.11093
[5] Lewin, L., Polylogarithms and associated functions, (1981), North Holland · Zbl 0465.33001
[6] Chen, K. T., Iterated integrals of differential forms and loop space homology, Ann. of Math., 97, 2, 217-246, (1973), URL http://www.jstor.org/stable/1970846 · Zbl 0227.58003
[7] Lappo-Danilevsky, J. A., Mémoires sur la théorie des systèmes des équations différentielles linéaires, vol. I-III, (1953), Chelsea, individual volumes first published in Trav. Inst. Stekloff 6-8, (1934-1936) · Zbl 0051.32301
[8] Remiddi, E.; Vermaseren, J. A.M., Harmonic polylogarithms, Internat. J. Modern Phys. A, 15, 5, 725-754, (2000) · Zbl 0951.33003
[9] Maître, D., HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun., 174, 222-240, (2006) · Zbl 1196.68330
[10] Maître, D., Ex tension of HPL to complex arguments, Comput. Phys. Commun., 183, 3, 846, (2012), arXiv:hep-ph/0703052, URL http://www.sciencedirect.com/science/article/pii/S0010465511003778
[11] Ablinger, J.; Blümlein, J.; Schneider, C., Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms, J. Math. Phys., 54, 8, 082301, (2013) · Zbl 1295.81071
[12] Almkvist, G.; Zeilberger, D., The method of differentiating under the integral sign, J. Symbolic. Comput., 10, 6, 571-591, (1990), URL http://www.sciencedirect.com/science/article/pii/S0747717108801599 · Zbl 0717.33004
[13] Brown, F. C.S., Multiple zeta values and periods of moduli spaces \(\overline{\mathfrak{M}}_{0, n}(\mathbb{R})\), Ann. Sci. Éc. Norm. Supér., 42, 3, 371-489, (2009) · Zbl 1216.11079
[14] Brown, F. C.S., The massless higher-loop two-point function, Comm. Math. Phys., 287, 3, 925-958, (2009) · Zbl 1196.81130
[15] F.C.S. Brown, On the periods of some Feynman integrals, ArXiv e-prints arXiv:0910.0114.
[16] Chavez, F.; Duhr, C., Three-mass triangle integrals and single-valued polylogarithms, J. High Energy Phys., 11, 114, (2012)
[17] C. Anastasiou, J. Cancino, F. Chavez, C. Duhr, A. Lazopoulos, B. Mistlberger, R. Mueller, NNLO QCD corrections to \(p p \rightarrow \gamma^\ast \gamma^\ast\) in the large \(N_F\) limit, ArXiv e-prints arXiv:1408.4546.
[18] Ablinger, J.; Blümlein, J.; Hasselhuhn, A.; Klein, S.; Schneider, C.; Wißbrock, F., Massive 3-loop ladder diagrams for quarkonic local operator matrix elements, Nuclear Phys. B, 864, 1, 52-84, (2012), arXiv:1206.2252, URL http://www.sciencedirect.com/science/article/pii/S0550321312003355 · Zbl 1262.81184
[19] J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, S. Klein, C. Schneider, F. Wißbrock, New Results on the 3-Loop Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering, ArXiv e-printsContribution to the Proceedings of the 36th International Conference on High Energy Physics 4-11 July 2012, Melbourne, Australia. arXiv:1212.5950v2.
[20] Ablinger, J.; Blümlein, J.; Raab, C.; Schneider, C.; Wißbrock, F., Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms, Nuclear Phys. B, 885, 409-447, (2014), arXiv:1403.1137, URL http://www.sciencedirect.com/science/article/pii/S0550321314001163 · Zbl 1323.81097
[21] Anastasiou, C.; Duhr, C.; Dulat, F.; Mistlberger, B., Soft triple-real radiation for Higgs production at \(\text{N}_3 \text{LO}\), J. High Energy Phys., 2013, 7, 1-78, (2013)
[22] Maplesoft, a division of Waterloo Maple Inc., Maple 16.
[23] Panzer, E., On the analytic computation of massless propagators in dimensional regularization, Nuclear Phys. B, 874, 2, 567-593, (2013), arXiv:1305.2161, URL http://www.sciencedirect.com/science/article/pii/S0550321313003003 · Zbl 1282.81091
[24] Panzer, E., On hyperlogarithms and Feynman integrals with divergences and many scales, J. High Energy Phys., 2014, 3, 71, (2014)
[25] Duhr, C., Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, J. High Energy Phys., 2012, 8, 043, (2012)
[26] Goncharov, A. B.; Spradlin, M.; Vergu, C.; Volovich, A., Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett., 105, 15, 151605, (2010)
[27] Duhr, C.; Gangl, H.; Rhodes, J. R., From polygons and symbols to polylogarithmic functions, J. High Energy Phys., 10, 75, (2012)
[28] Argeri, M.; Mastrolia, P., Feynman diagrams and differential equations, Internat. J. Modern Phys. A, 22, 24, 4375-4436, (2007) · Zbl 1141.81325
[29] Chyzak, F., An extension of zeilberger’s fast algorithm to general holonomic functions, Discrete Math., 217, 1-3, 115-134, (2000), URL http://www.sciencedirect.com/science/article/pii/S0012365X99002599 · Zbl 0968.33011
[30] Apagodu, M.; Zeilberger, D., Multi-variable Zeilberger and almkvistüzeilberger algorithms and the sharpening of wilfüzeilberger theory, Adv. Appl. Math., 37, 2, 139-152, (2006), Special issue in honor of Amitai Regev on his 65th birthday, URL http://www.sciencedirect.com/science/article/pii/S0196885806000418 · Zbl 1108.05010
[31] J. Ablinger, S. Blümlein, M. Round, C. Schneider, Advanced Computer Algebra Algorithms for the Expansion of Feynman Integrals, in: Loops and Legs in Quantum Field Theory, April 15-20, 2012, Wernigerode, Germany, Vol. LL2012, Proceedings of Science, 2012, p. 050. arXiv:1210.1685, URL http://pos.sissa.it/archive/conferences/151/050/LL2012_050.pdf.
[32] Moch, S.; Uwer, P.; Weinzierl, S., Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys., 43, 3363-3386, (2002) · Zbl 1060.33007
[33] Weinzierl, S., Symbolic expansion of transcendental functions, Comput. Phys. Commun., 145, 357-370, (2002) · Zbl 1001.65025
[34] Moch, S.; Uwer, P., -{\scxsummer}- transcendental functions and symbolic summation in {\scform}, Comput. Phys. Commun., 174, 9, 759-770, (2006), arXiv:math-ph/0508008, URL http://www.sciencedirect.com/science/article/pii/S0010465506000397 · Zbl 1196.68332
[35] Golz, M., Evaluation techniques for Feynman diagrams, (2013), Humboldt-Universität zu Berlin, URL http://www2.mathematik.hu-berlin.de/ kreimer/wp-content/uploads/BA_Golz_final.pdf
[36] Panzer, E., Feynman integrals and hyperlogarithms, (2014), Humboldt-Universität zu Berlin, (Ph.D. thesis)
[37] Bogner, C.; Brown, F. C.S., Symbolic integration and multiple polylogarithms, Proc. Sci., LL2012, 053, (2012), arXiv:1209.6524, URL http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=151
[38] C. Bogner, F.C.S. Brown, Feynman integrals and iterated integrals on moduli spaces of curves of genus zero, arXiv:1408.1862. · Zbl 1316.81040
[39] Reutenauer, C., Free Lie algebras, (London Mathematical Society Monographs, vol. 7, (1993), Clarendon Press Oxford) · Zbl 0798.17001
[40] Sweedler, M. E., Hopf algebras, mathematics lecture note series, (1969), W.A. Benjamin, Inc. New York · Zbl 0194.32901
[41] Hain, R., The geometry of the mixed Hodge structure on the fundamental group, Proc. Sympos. Pure Math., 46, 247-282, (1987)
[42] Bauer, C.; Frink, A.; Kreckel, R., Introduction to the ginac framework for symbolic computation within the C++ programming language, J. Symbolic. Comput., 33, 1, 1-12, (2002), arXiv:cs/0004015, URL http://www.sciencedirect.com/science/article/pii/S0747717101904948 · Zbl 1017.68163
[43] Vollinga, J.; Weinzierl, S., Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun., 167, 3, 177-194, (2005), arXiv:hep-ph/0410259, URL http://www.sciencedirect.com/science/article/pii/S0010465505000706 · Zbl 1196.65045
[44] O. Schnetz, . URL http://www.mathematik.hu-berlin.de/ kreimer/index.php?section=program&lang=en.
[45] Brown, F. C.S., Mixed Tate motives over \(\mathbb{Z}\), Ann. of Math. (2), 175, 2, 949-976, (2012) · Zbl 1278.19008
[46] Brown, F. C.S., On the decomposition of motivic multiple zeta values, (Galois-Teichmüller Theory and Arithmetic Geometry, Adv. Studies in Pure Math., vol. 68, (2012), Math. Soc. Japan Tokyo), 31-58 · Zbl 1321.11087
[47] Deligne, P., Le groupe fondamental unipotent motivique de \(\mathbb{G}_m - \mu_N\), pour \(N = 2\), 3, 4, 6 ou 8, Publ. Math. IHÉS, 112, 1, 101-141, (2010) · Zbl 1218.14016
[48] Blümlein, J.; Broadhurst, D. J.; Vermaseren, J. A.M., The multiple zeta value data mine, Comput. Phys. Commun., 181, 3, 582-625, (2010), arXiv:0907.2557, URL http://www.sciencedirect.com/science/article/pii/S0010465509003701 · Zbl 1221.11183
[49] Bailey, D. H.; Borwein, J. M.; Crandall, R. E., Integrals of the Ising class, J. Phys. A: Math. Gen., 39, 40, 12271, (2006), URL http://stacks.iop.org/0305-4470/39/i=40/a=001 · Zbl 1113.65023
[50] Radford, D. E., A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra, 58, 2, 432-454, (1979), URL http://www.sciencedirect.com/science/article/pii/0021869379901716 · Zbl 0409.16011
[51] Bonciani, R.; Degrassi, G.; Vicini, A., On the generalized harmonic polylogarithms of one complex variable, Comput. Phys. Commun., 182, 6, 1253-1264, (2011), arXiv:1007.1891, URL http://www.sciencedirect.com/science/article/pii/S0010465511000737 · Zbl 1262.65035
[52] C. Bogner, M. Lüders, Multiple polylogarithms and linearly reducible Feynman graphs, ArXiv e-prints arXiv:1302.6215.
[53] Brown, F. C.S.; Kreimer, D., Angles, scales and parametric renormalization, Lett. Math. Phys., 103, 9, 933-1007, (2013) · Zbl 1273.81164
[54] D. Kreimer, Quantum fields, periods and algebraic geometry, in: PM2012 - Periods and Motives (Madrid, July 2-6, 2012), 2014. arXiv:1405.4964, URL http://www.mathematik.hu-berlin.de/ maphy/MadridAMS.pdf.
[55] Laporta, S.; Remiddi, E., An alytic treatment of the two loop equal mass sunrise graph, Nuclear Phys. B, 704, 1-2, 349-386, (2005), arXiv:hep-ph/0406160, URL http://www.sciencedirect.com/science/article/pii/S0550321304008259 · Zbl 1119.81356
[56] Adams, L.; Bogner, C.; Weinzierl, S., The two-loop sunrise graph with arbitrary masses, J. Math. Phys., 54, 5, 052303, (2013) · Zbl 1282.81193
[57] S. Bloch, P. Vanhove, The elliptic dilogarithm for the sunset graph, ArXiv e-prints arXiv:1309.5865. · Zbl 1319.81044
[58] F.C.S. Brown, D. Doryn, Framings for graph hypersurfaces, ArXiv e-prints arXiv:1301.3056.
[59] Nandan, D.; Paulos, M. F.; Spradlin, M.; Volovich, A., Star integrals, convolutions and simplices, J. High Energy Phys., 2013, 5, 105, (2013) · Zbl 1342.83412
[60] Caron-Huot, S.; Larsen, K. J., Uniqueness of two-loop master contours, J. High Energy Phys., 2012, 10, 26, (2012)
[61] Itzykson, C.; Zuber, J.-B., Quantum field theory, (2005), Dover Publications, Inc.
[62] Bogner, C.; Weinzierl, S., Feynman graph polynomials, Internat. J. Modern Phys. A, 25, 2585-2618, (2010) · Zbl 1193.81072
[63] Collins, J. C., Renormalization, Cambridge monographs on mathematical physics, (1984), Cambridge University Press
[64] Smirnov, A. V.; Smirnov, V. A., FIRE4, litered and accompanying tools to solve integration by parts relations, Comput. Phys. Comm., 184, 12, 2820-2827, (2013) · Zbl 1344.81031
[65] A. von Manteuffel, C. Studerus, Reduze 2 - distributed feynman integral reduction, ArXiv e-prints arXiv:1201.4330.
[66] Binosi, D.; Theußl, L., Jaxodraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun., 161, 1-2, 76-86, (2004), arXiv:hep-ph/0309015, URL http://www.sciencedirect.com/science/article/pii/S0010465504002115
[67] Vermaseren, J. A.M., Axodraw, Comput. Phys. Comm., 83, 1, 45-58, (1994), URL http://www.sciencedirect.com/science/article/pii/0010465594900345 · Zbl 1114.68598
[68] Lewin, L., Structural properties of polylogarithms, (Mathematical Surveys and Monographs, vol. 37, (1991), American Mathematical Society) · Zbl 0745.33009
[69] Kreimer, D.; Panzer, E., Renormalization and Mellin transforms, (Schneider, C.; Blümlein, J., Computer Algebra in Quantum Field Theory, Texts & Monographs in Symbolic Computation, vol. XII, (2013), Springer Wien), 195-223, arXiv:1207.6321 · Zbl 1308.81137
[70] Broedel, J.; Schlotterer, O.; Stieberger, S., Polylogarithms, multiple zeta values and superstring amplitudes, Fortschr. Phys., 61, 9, 812-870, (2013) · Zbl 1338.81316
[71] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Commun., 178, 596-610, (2008) · Zbl 1196.81010
[72] Smirnov, A. V.; Tentyukov, M. N., Feynman integral evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Commun., 180, 735-746, (2009) · Zbl 1198.81044
[73] Del Duca, V.; Duhr, C.; Smirnov, V. A., The massless hexagon integral in \(D = 6\) dimensions, Phys. Lett. B, 703, 3, 363-365, (2011), arXiv:1104.2781, URL http://www.sciencedirect.com/science/article/pii/S0370269311008987
[74] Dixon, L. J.; Drummond, J. M.; Henn, J. M., The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in \(\mathcal{N} = 4\) SYM, J. High Energy Phys., 2011, 6, 100, (2011) · Zbl 1298.81168
[75] Brown, F. C.S.; Yeats, K. A., Spanning forest polynomials and the transcendental weight of Feynman graphs, Comm. Math. Phys., 301, 2, 357-382, (2011) · Zbl 1223.05019
[76] O. Schnetz, Graphical functions and single-valued multiple polylogarithms, ArXiv e-prints arXiv:1302.6445.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.