×

Nodal solutions for the Choquard equation. (English) Zbl 1345.35046

The authors study a general Choquard equation with a Riesz potential. A new version of a minimax principle for least action nodal solutions is proved. Minimal action odd solutions and minimal action nodal solutions are constructed.

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J20 Variational methods for second-order elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Baernstein, A., A unified approach to symmetrization, (Partial Differential Equations of Elliptic Type, Cortona, 1992, Sympos. Math., vol. XXXV, (1994), Cambridge Univ. Press Cambridge), 47-91 · Zbl 0830.35005
[2] Bogachev, V. I., Measure theory, (2007), Springer Berlin · Zbl 1120.28001
[3] Brezis, H.; Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math., 44, 8-9, 939-963, (1991) · Zbl 0751.58006
[4] Brock, F.; Solynin, A. Yu., An approach to symmetrization via polarization, Trans. Amer. Math. Soc., 352, 4, 1759-1796, (2000) · Zbl 0965.49001
[5] Castro, A.; Cossio, J.; Neuberger, J. M., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27, 4, 1041-1053, (1997) · Zbl 0907.35050
[6] Castro, A.; Cossio, J.; Neuberger, J. M., A minimax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems, Electron. J. Differential Equations, 1998, 2, 18, (1998) · Zbl 0901.35028
[7] Cerami, G.; Solimini, S.; Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69, 3, 289-306, (1986) · Zbl 0614.35035
[8] Cingolani, S.; Clapp, M.; Secchi, S., Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63, 2, 233-248, (2012) · Zbl 1247.35141
[9] Cingolani, S.; Clapp, M.; Secchi, S., Intertwining semiclassical solutions to a Schrödinger-Newton system, Discrete Contin. Dyn. Syst. Ser. S, 6, 4, 891-908, (2013) · Zbl 1260.35198
[10] Clapp, M.; Salazar, D., Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407, 1, 1-15, (2013) · Zbl 1310.35114
[11] Furtado, M. F.; Maia, L. A.; Medeiros, E. S., Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8, 2, 353-373, (2008) · Zbl 1168.35433
[12] Ghimenti, M.; Moroz, V.; Van Schaftingen, J., Least action nodal solutions for the quadratic Choquard equation, to appear in Proc. Amer. Math. Soc. · Zbl 1355.35079
[13] Jones, K. R.W., Gravitational self-energy as the litmus of reality, Modern Phys. Lett. A, 10, 8, 657-668, (1995)
[14] Jones, K. R.W., Newtonian quantum gravity, Aust. J. Phys., 48, 6, 1055-1081, (1995)
[15] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105, (1976/1977) · Zbl 0369.35022
[16] Lieb, E. H.; Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14, (2001), American Mathematical Society Providence, RI · Zbl 0966.26002
[17] Lions, P.-L., The Choquard equation and related questions, Nonlinear Anal., 4, 6, 1063-1072, (1980) · Zbl 0453.47042
[18] Lions, P.-L., The concentration-compactness principle in the calculus of variations. the locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 4, 223-283, (1984) · Zbl 0704.49004
[19] Mawhin, J.; Willem, M., Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, (1989), Springer New York · Zbl 0676.58017
[20] Moroz, I. M.; Penrose, R.; Tod, P., Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15, 9, 2733-2742, (1998) · Zbl 0936.83037
[21] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184, (2013) · Zbl 1285.35048
[22] Moroz, V.; Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367, 9, 6557-6579, (2015) · Zbl 1325.35052
[23] Palais, R. S., The principle of symmetric criticality, Comm. Math. Phys., 69, 1, 19-30, (1979) · Zbl 0417.58007
[24] Pekar, S., Untersuchung über die elektronentheorie der kristalle, (1954), Akademie Verlag Berlin · Zbl 0058.45503
[25] Schechter, M., An introduction to nonlinear analysis, Cambridge Studies in Advanced Mathematics, vol. 95, (2004), Cambridge Univ. Press Cambridge · Zbl 1076.58009
[26] Schechter, M., Minimax systems and critical point theory, (2009), Birkhäuser Boston, Mass. · Zbl 1186.35043
[27] Van Schaftingen, J., Interpolation inequalities between Sobolev and Morrey-Campanato spaces: a common gateway to concentration-compactness and Gagliardo-Nirenberg interpolation inequalities, Port. Math., 71, 3-4, 159-175, (2014) · Zbl 1326.46032
[28] Van Schaftingen, J.; Willem, M., Set transformations, symmetrizations and isoperimetric inequalities, (Benci, V.; Masiello, A., Nonlinear Analysis and Applications to Physical Sciences, Pistoia, May 2002, (2004), Springer Italia, Milan), 135-152 · Zbl 1453.26034
[29] Van Schaftingen, J.; Willem, M., Symmetry of solutions of semilinear elliptic problems, J. Eur. Math. Soc. (JEMS), 10, 2, 439-456, (2008) · Zbl 1148.35025
[30] Willem, M., Minimax theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, (1996), Birkhäuser Boston, Mass. · Zbl 0856.49001
[31] Willem, M., Functional analysisfundamentals and applications, Cornerstones, (2013), Birkhäuser
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.