×

Influence of annular boundaries on Thomson’s vortex polygon stability. (English) Zbl 1345.70034

Summary: The stability analysis of the stationary rotation of a system of \(N\) identical point vortices lying uniformly on a circle inside an annulus is presented. The problem is reduced to one of the equilibrium stability of the Hamiltonian system with a cyclic variable. The quadratic part of the Hamiltonian and eigenvalues of the linearization matrix are studied. The stability of the stationary motion is interpreted as a Routh stability. The exponential instability is shown always to take place if \(N \geq 7\). For \(N = 2, 4,\) and 6, the parameter space is divided in two: a Routh stability domain in an exact nonlinear setting and an exponential instability domain. For \(N = 3\) and 5, the parameter space consists of three domains. The stability of the third in an exact nonlinear setting is sandwiched between the Routh and exponential domains. Its analysis remains an open problem with its solution requiring nonlinear analysis.{
©2014 American Institute of Physics}

MSC:

70K20 Stability for nonlinear problems in mechanics
70H14 Stability problems for problems in Hamiltonian and Lagrangian mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Meleshko, A. V.; Konstantinov, N. N., Dynamics of Vortex Systems, (1993), Naukova Dumka: Naukova Dumka, Kiev
[2] Newton, P. K., The N-Vortex Problem: Analytical Techniques, 415, (2001), Springer: Springer, New York · Zbl 0981.76002
[3] Aref, H.; Newton, P. K.; Stremler, M. A.; Tokieda, T.; Vainchtein, D. L., Vortex crystals, Adv. Appl. Mech., 39, 1, (2003)
[4] Saffman, P. G., Vortex Dynamics, (1992), Cambridge University Press
[5] Sokolovskiy, M. A.; Verron, J., The Dynamics of Vortex Structures a Stratified Rotating Fluid, (2011), Institute of Computer Science: Institute of Computer Science, Moscow-Izhevsk
[6] Thomson, W., Floating magnets (illustrating vortex-systems), Nature, 18, 13, (1878), 10.1038/018013b0; Thomson, W., Floating magnets (illustrating vortex-systems), Nature, 18, 13, (1878), 10.1038/018013b0;
[7] Thomson, J. J., On the Motion of Vortex Rings, (1883), Macmillan: Macmillan, London · JFM 15.0854.02
[8] Havelock, T. H., The stability of motion of rectilinear vortices in ring formation, Philos. Mag. Ser. 7, 11, 617, (1931) · JFM 57.1109.03
[9] Kurakin, L. G., On the stability of the regular n-sided polygon of vortices, Phys. Dokl., 39, 284, (1994); Kurakin, L. G., On the stability of the regular n-sided polygon of vortices, Phys. Dokl., 39, 284, (1994); · Zbl 0832.76028
[10] Kurakin, L. G.; Yudovich, V. I., On nonlinear stability of steady rotation of a regular vortex polygon, Dokl. Phys., 47, 465, (2002) · Zbl 1080.76520
[11] Kurakin, L. G.; Yudovich, V. I., The stability of stationary rotation of a regular vortex polygon, Chaos, 12, 574, (2002), 10.1063/1.1482175; Kurakin, L. G.; Yudovich, V. I., The stability of stationary rotation of a regular vortex polygon, Chaos, 12, 574, (2002), 10.1063/1.1482175; · Zbl 1080.76520
[12] Mayer, A. M., Experiments with floating magnets, Am. J. Sci. Arts, Third Ser., XV, 276, (1878) · Zbl 0961.76014
[13] Mayer, A. M., Floating magnets, Nature, 18, 258, (1878)
[14] Yarmchuck, E.; Gordon, M.; Packard, R., Observation of stationary vortex array in rotating superfluid helium, Phys. Rev. Lett., 43, 214, (1979)
[15] Yarmchuck, E.; Packard, R., Photographic studies of quantized vortex lines, J. Low Temp. Phys., 46, 479, (1982)
[16] Fine, K.; Cass, A.; Flynn, W.; Dryscoll, C., Relaxation of 2D turbulence to vortex crystal, Phys. Rev. Lett., 75, 3277, (1995)
[17] Durkin, D.; Fajans, J., Experiments on two-dimensional vortex patterns, Phys. Fluids, 12, 289, (2000) · Zbl 1149.76365
[18] Morton, W. V., Vortex polygons, Proc. R. Ir. Acad., Sect. A, 42, 21, (1935) · JFM 61.0912.03
[19] Khazin, L. G., Regular polygons of point vortices and resonance instability of steady states, Sov. Phys. Dokl., 21, 567, (1976); Khazin, L. G., Regular polygons of point vortices and resonance instability of steady states, Sov. Phys. Dokl., 21, 567, (1976);
[20] Mertz, G. T., Stability of body-centered polygonal configurations of ideal vortices, Phys. Fluids, 21, 1092, (1978) · Zbl 0379.76042
[21] Cabral, H. E.; Schmidt, D. S., Spectral stability of relative equilibria in the problem of N + 1 vortices, SIAM Soc. Ind. Appl. Math. J. Math. Anal., 31, 231, (1999) · Zbl 0961.76014
[22] Campbell, L. J., Transverse normal modes of finite vortex arrays, Phys. Rev. A, 24, 514, (1981)
[23] Kurakin, L. G., Stability, resonances, and instability of the regular vortex polygons in the circular domain, Dokl. Phys., 49, 658, (2004)
[24] Kurakin, L. G., On stability of a regular vortex polygon in the circular domain, J. Math. Fluid Mech., 7, S376, (2005) · Zbl 1097.76031
[25] Kurakin, L. G., The stability of the steady rotation of a system of three equidistant vortices outside a circle, J. Appl. Math. Mech., 75, 227, (2011) · Zbl 1272.76116
[26] Kurakin, L. G., On the stability of Thomson’s vortex configurations inside a circular domain, Reg. Chaot. Dyn., 15, 40, (2010) · Zbl 1229.37055
[27] Kurakin, L. G.; Ostrovskaya, I. V., Stability of the Thomson vortex polygon with evenly many vortices outside a circular domain, Sib. Math. J., 51, 463, (2010) · Zbl 1211.76027
[28] Kurakin, L. G.; Ostrovskaya, I. V., Nonlinear stability analysis of a regular vortex pentagon outside a circle, Reg. Chaot. Dyn., 17, 385, (2012) · Zbl 1252.76017
[29] Kurakin, L. G., On the stability of Thomson’s vortex pentagon inside a circular domain, Reg. Chaot. Dyn., 17, 150, (2012) · Zbl 1270.76018
[30] Boatto, S.; Crowdy, D.; Franecoise, J.-P.; Naber, G. L.; Tsu, T. S., Point-Vortex Dynamics, Encyclopedia of Mathematical Physics, (2006), Elsevier
[31] Boatto, S.; Simo, C., Thomson’s heptagon: A case of bifurcation at infinity, Physica D, 237, 2051, (2008) · Zbl 1143.76404
[32] Dritschel, D. G., The stability and energetics of co-rotating uniform vortices, J. Fluid Mech., 157, 95, (1985) · Zbl 0574.76026
[33] Laurent-Polz, F., Point-vortices on the sphere: A case of opposite vortices, Nonlinearity, 15, 143, (2002) · Zbl 0999.76030
[34] Pekarsky, S.; Marsden, J., Point vortices on a sphere: Stability of relative equilibria, J. Math. Phys., 39, 5894, (1998) · Zbl 0927.37013
[35] Roberts, G., Stability of relative equilibria in the planar n-vortex problem, SIAM J. Appl. Dyn. Syst., 12, 1114, (2013) · Zbl 1282.70022
[36] Bogomolov, V. A., Model of fluctuations of the centers of action of an atmosphere, Izv. Acad. Sci., USSR, Atmos. Oceanic Phys., 15, 243, (1979)
[37] Pashaev, O. K.; Yilmaz, O., Vortex images and q-elementary functions, J. Phys. A: Math. Theor., 41, 135207, (2008) · Zbl 1388.76040
[38] Johnson, E. R.; McDonald, N. R., The motion of a vortex near two circular cylinders, Proc. R. Soc. London, Sec. A., 460, 939, (2004) · Zbl 1109.76014
[39] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis, (1927), Cambridge University Press: Cambridge University Press, Cambridge · JFM 53.0180.04
[40] Fetter, A. L., Low-lying super states in a rotating annulus, Phys. Rev., 153, 285, (1967) · Zbl 0147.44106
[41] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (1972), Dover Publications: Dover Publications, New York · Zbl 0543.33001
[42] Routh, E. J., A Treatise on the Stability of a Given State Motion, 108, (1877), Macmillan: Macmillan, London
[43] Marsden, J. E.; Weinstein, W., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 121, (1974) · Zbl 0327.58005
[44] Simo, J. C.; Lewis, D.; Marsden, J. E., Stability of relative equilibria. Part I: The reduced energy-momentum method, Arch. Ration. Mech. Anal., 115, 15, (1991) · Zbl 0738.70010
[45] Patrick, G. W., Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space, J. Geom. Phys., 9, 111, (1992) · Zbl 0761.58017
[46] Karapetyan, A. V., Stability of Stationary Motion, (1998), Editorial URRS: Editorial URRS, Moscow
[47] Proskuryakov, I. V., Problems in Linear Algebra, (1984), Nauka: Nauka, Moscow · Zbl 0544.15001
[48] Bruno, A. D., The Restricted 3-Body Problem: Plane Periodic Orbits, De Gruyter Expositions in Mathematics. 36, (1994), Walter de Gruyter: Walter de Gruyter, Berlin, New York: 2, Walter de Gruyter: Walter de Gruyter, Berlin, New York: Walter de Gruyter: Walter de Gruyter, Berlin, New York: 2, Walter de Gruyter: Walter de Gruyter, Berlin, New York, .
[49] Markeev, A. P., Libration Points in Celestial Mechanics and Cosmodynamics, (1978), Nauka: Nauka, Moscow
[50] Williamson, J., On the normal forms of linear canonical transformations in dynamics, Am. J. Math., 59, 599, (1937) · JFM 63.0845.02
[51] Galin, D. M.; Rado, G. T.; Suhl, H., Versal deformations of linear Hamiltonian systems, Trudy Seminara I. G. Petrovskogo, 105, (1975), Moscow State University: Moscow State University, Moscow
[52] Laub, J.; Meyer, K., Canonical forms for symplectic and Hamiltonian matrices, Celest. Mech., 9, 213, (1974) · Zbl 0316.15005
[53] Kolmogorov, A. N., On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR, 98, 527, (1954) · Zbl 0056.31502
[54] Arnold, V. I., Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Math. Survey, 18, 85, (1963) · Zbl 0135.42701
[55] Moser, J., Lectures on Hamiltonian Systems, (1968), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0172.11401
[56] Erdakova, N. N., Thomson’s configurations in dynamics of two vortices in an annular region, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 4, 71, (2010)
[57] Bautin, N. N., Behavior of Dynamics Systems near the Boundary of the Stability Region, (1984), Gostekhizdat: Gostekhizdat, Moscow · Zbl 0537.34001
[58] Kurakin, L. G., On the nonlinear stability of regular vortex polygons and polyhedra on a sphere, Dokl. Phys., 48, 84, (2003)
[59] Kurakin, L. G., On nonlinear stability of the regular vortex systems on a sphere, Chaos, 14, 592, (2004) · Zbl 1080.76031
[60] Newton, P. K.; Ostrovskyi, V., Energy-momentum stability of icosahedral configurations of point vortices on a sphere, J. Nonlinear Sci., 22, 499, (2012) · Zbl 1351.37223
[61] Sokolovskiy, M. A.; Koshel, K. V.; Verron, J., Three-vortex quasi-geostrophic dynamics in a two-layer fluid. Part 1. Analysis of relative and absolute motions, J. Fluid Mech., 717, 232, (2013) · Zbl 1284.76083
[62] Gradshteyn, I. S.; Ryzhik, I. M.; Jeffrey, A.; Zwillinger, D., Table of Integrals, Series, and Products, 1160, (2000), Academic Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.