×

zbMATH — the first resource for mathematics

Navier-Stokes flow in the weighted Hardy space with applications to time decay problem. (English) Zbl 1346.35147
The authors consider the Navier-Stokes (N-S) equations in \(\mathbb{R}^n\), \(n\geq 2\). They establish weighted estimates and \(m\)-th order asymptotic expansions of the N-S flow (\(m\in \mathbb{N}\)), under a moment condition on initial data. It is worth pointing out that the initial data can be chosen to be unbounded. In addition, the rapid time decay is established if the symmetry of the flow is assumed. The authors provide a clear comparison of their significant results with previous related ones.

MSC:
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35C20 Asymptotic expansions of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amrouche, C.; Girault, V.; Schonbek, M. E.; Schonbek, T. P., Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations, SIAM J. Math. Anal., 31, 740-753, (2000) · Zbl 0986.35085
[2] Bae, H.-O.; Jin, B. J., Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations, J. Differential Equations, 209, 365-391, (2005) · Zbl 1062.35058
[3] Brandolese, L., On the localization of symmetric and asymmetric solutions of the Navier-Stokes equations in \(\mathbb{R}^n\), C. R. Acad. Sci. Paris Sér. I Math., 332, 125-130, (2001) · Zbl 0973.35149
[4] Brandolese, L., Asymptotic behavior of the energy and pointwise estimates for solutions to the Navier-Stokes equations, Rev. Mat. Iberoam., 20, 223-256, (2004) · Zbl 1057.35026
[5] Brandolese, L., Weighted \(L^2\)-spaces and strong solutions of the Navier-Stokes equations in \(\mathbb{R}^3\), (Trends in Partial Differential Equations of Mathematical Physics, Progr. Nonlinear Differential Equations Appl., vol. 61, (2005)), 27-35 · Zbl 1081.35072
[6] Brandolese, L., Space-time decay of Navier-Stokes flows invariant under rotations, Math. Ann., 329, 685-706, (2004) · Zbl 1080.35062
[7] Bui, H.-Q., Weighted Besov and Triebel spaces: interpolation by the real method, Hiroshima Math. J., 12, 581-605, (1982) · Zbl 0525.46023
[8] Carpio, A., Large-time behavior in incompressible Navier-Stokes equations, SIAM J. Math. Anal., 27, 449-475, (1996) · Zbl 0845.76019
[9] Choe, H. J.; Jin, B. J., Weighted estimate of the asymptotic profiles of the Navier-Stokes flow in \(\mathbb{R}^n\), J. Math. Anal. Appl., 344, 353-366, (2008) · Zbl 1186.35138
[10] Coifman, R.; Lions, P. L.; Meyer, Y.; Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72, 247-286, (1993) · Zbl 0864.42009
[11] Fefferman, C.; Stein, E., \(H^p\) spaces of several variables, Acta Math., 129, 137-193, (1972) · Zbl 0257.46078
[12] Fujigaki, Y.; Miyakawa, T., Asymptotic profiles of nonstationary incompressible Navier-Stokes flows in the whole space, SIAM J. Math. Anal., 33, 523-544, (2001) · Zbl 0995.35046
[13] García-Cuerva, J., Weighted \(H^p\)-spaces, Dissertationes Math., 162, (1979) · Zbl 0434.42023
[14] He, C., Weighted estimates for nonstationary Navier-Stokes equations, J. Differential Equations, 148, 422-444, (1998) · Zbl 0910.35092
[15] Kajikiya, R.; Miyakawa, T., On \(L^2\) decay of weak solutions of the Navier-Stokes equations in \(\mathbf{R}^n\), Math. Z., 192, 135-148, (1986) · Zbl 0607.35072
[16] Kato, T., Strong \(L^p\)-solutions of the Navier-Stokes equation in \(\mathbf{R}^m\), with applications to weak solutions, Math. Z., 187, 471-480, (1984) · Zbl 0545.35073
[17] Kobayashi, T.; Kubo, T., Weighted \(L^p - L^q\) estimates of the Stokes semigroup in some unbounded domains, Tsukuba J. Math., 37, 179-205, (2013) · Zbl 1282.35103
[18] Kukavica, I., On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Anal., 70, 2466-2470, (2009) · Zbl 1166.35358
[19] Kukavica, I.; Reis, E., Asymptotic expansion for solutions of the Navier-Stokes equations with potential forces, J. Differential Equations, 250, 607-622, (2011) · Zbl 1205.35200
[20] Kukavica, I.; Torres, J. J., Weighted \(L^p\) decay for solutions of the Navier-Stokes equations, Comm. Partial Differential Equations, 32, 819-831, (2007) · Zbl 1121.35101
[21] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248, (1934) · JFM 60.0726.05
[22] Lu, S.; Yang, D., The local versions of \(H^p(\mathbf{R}^n)\) spaces at the origin, Studia Math., 116, 103-131, (1995) · Zbl 0935.42012
[23] Masuda, K., Weak solutions of Navier-Stokes equations, Tohoku Math. J., 36, 623-646, (1984) · Zbl 0568.35077
[24] Miyachi, A., Weighted Hardy spaces on a domain, (Proceedings of the Second ISAAC Congress, vol. 1, Fukuoka, 1999, Int. Soc. Anal. Appl. Comput., vol. 7, (2000), Kluwer Acad. Publ. Dordrecht), 59-64 · Zbl 1055.46503
[25] Miyachi, A., Remarks on Herz-type Hardy spaces, Acta Math. Sin. (Engl. Ser.), 17, 339-360, (2001) · Zbl 0993.42010
[26] Miyakawa, T., Hardy spaces of solenoidal vector fields, with applications to the Navier-Stokes equations, Kyushu J. Math., 50, 1-64, (1996) · Zbl 0883.35088
[27] Miyakawa, T., Application of Hardy space techniques to the time-decay problem for incompressible Navier-Stokes flows in \(\mathbf{R}^n\), Funkcial. Ekvac., 41, 383-434, (1998) · Zbl 1142.35544
[28] Miyakawa, T., On space-time decay properties of nonstationary incompressible Navier-Stokes flows in \(\mathbf{R}^n\), Funkcial. Ekvac., 43, 541-557, (2000) · Zbl 1142.35545
[29] Miyakawa, T., Notes on space-time decay properties of nonstationary incompressible Navier-Stokes flows in \(\mathbf{R}^n\), Funkcial. Ekvac., 45, 271-289, (2002) · Zbl 1141.35434
[30] Miyakawa, T., On upper and lower bounds of rates of decay for nonstationary Navier-Stokes flows in the whole space, Hiroshima Math. J., 32, 431-462, (2002) · Zbl 1048.35063
[31] Miyakawa, T.; Schonbek, M. E., On optimal decay rates for weak solutions to the Navier-Stokes equations in \(\mathbb{R}^n\), Proceedings of Partial Differential Equations and Applications, Olomouc, 1999, Math. Bohem., 126, 443-455, (2001) · Zbl 0981.35048
[32] Schonbek, M. E., \(L^2\) decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88, 209-222, (1985) · Zbl 0602.76031
[33] Schonbek, M. E., Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11, 733-763, (1986) · Zbl 0607.35071
[34] Schonbek, M. E., Lower bounds of rates of decay for solutions to the Navier-Stokes equations, J. Amer. Math. Soc., 4, 423-449, (1991) · Zbl 0739.35070
[35] Schonbek, M. E., Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 41, 809-823, (1992) · Zbl 0759.35036
[36] Schonbek, M. E.; Schonbek, T. P., On the boundedness and decay of moments of solutions to the Navier-Stokes equations, Adv. Differential Equations, 5, 861-898, (2000) · Zbl 1027.35095
[37] Strömberg, J.-O.; Torchinsky, A., Weighted Hardy spaces, Lecture Notes in Math., vol. 1381, (1989), Springer-Verlag Berlin · Zbl 0676.42021
[38] Takahashi, S., A weighted equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal., 37, 751-789, (1999) · Zbl 0941.35066
[39] Tsutsui, Y., An application of weighted Hardy spaces to the Navier-Stokes equations, J. Funct. Anal., 266, 1395-1420, (2014) · Zbl 1306.46040
[40] Wiegner, M., Decay results for weak solutions of the Navier-Stokes equations on \(\mathbf{R}^n\), J. Lond. Math. Soc. (2), 35, 303-313, (1987) · Zbl 0652.35095
[41] Wiegner, M., Decay of the \(L_\infty\)-norm of solutions of Navier-Stokes equations in unbounded domains, Acta Appl. Math., 37, 215-219, (1994) · Zbl 0816.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.