zbMATH — the first resource for mathematics

A sequential convex program approach to an inverse linear semidefinite programming problem. (English) Zbl 1346.90660

90C22 Semidefinite programming
90C25 Convex programming
Full Text: DOI
[1] Ahuja, RK and JB Orlin (2001). Inverse optimization. Operations Research, 49, 771-783. genRefLink(16, ’S0217595916500251BIB001’, ’10.1287%252Fopre.49.5.771.10607’); genRefLink(128, ’S0217595916500251BIB001’, ’000171710100012’); · Zbl 1163.90764
[2] Ahuja, RK and JB Orlin (2002). Combinatorial algorithms for inverse network flow problems. Networks, 40, 181-187. genRefLink(16, ’S0217595916500251BIB002’, ’10.1002%252Fnet.10048’); genRefLink(128, ’S0217595916500251BIB002’, ’000179431100001’);
[3] Auslender, A (2003). Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone. Optimization Methods and Software, 18, 359-376. genRefLink(16, ’S0217595916500251BIB003’, ’10.1080%252F1055678031000122586’); genRefLink(128, ’S0217595916500251BIB003’, ’000185513300001’);
[4] Burkard, RE, Y Lin and J Zhang (2004). Weight reduction problems with certain bottleneck objectives. European Journal of Operational Research, 153, 191-199. genRefLink(16, ’S0217595916500251BIB004’, ’10.1016%252FS0377-2217%252802%252900713-0’); genRefLink(128, ’S0217595916500251BIB004’, ’000186736000015’);
[5] Burton, WR and PHL Toint (1992). On an instance of the inverse shortest paths problem. Mathematical Programming, 53, 45-61. genRefLink(16, ’S0217595916500251BIB005’, ’10.1007%252FBF01585693’); genRefLink(128, ’S0217595916500251BIB005’, ’A1992HD70700003’);
[6] Cai, MC, XG Yang and J Zhang (1999). The complexity analysis of the inverse center location problem. Journal of Global Optimization, 15, 213-218. genRefLink(16, ’S0217595916500251BIB006’, ’10.1023%252FA%253A1008360312607’); genRefLink(128, ’S0217595916500251BIB006’, ’000082507500007’);
[7] Chang, YL and JS Chen (2013). Convexity of symmetric cone trace functions in euclidean Jordan algebras. Journal of Nonlinear and Convex Analysis, 14, 53-61. genRefLink(16, ’S0217595916500251BIB007’, ’10.1016%252Fj.nonrwa.2012.05.002’); genRefLink(128, ’S0217595916500251BIB007’, ’000314737700005’); · Zbl 1270.26006
[8] Clarke, FH (1983). Optimization and Nonsmooth Analysis. New York: John Wiley and Sons.
[9] Ding, C (2012). An introduction to a class of matrix optimization problems. Ph.D. Thesis, National University of Singapore.
[10] Ding, C, DF Sun and JJ Ye (2014). First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints. Mathematical Programming, 147, 539-579. genRefLink(16, ’S0217595916500251BIB010’, ’10.1007%252Fs10107-013-0735-z’); genRefLink(128, ’S0217595916500251BIB010’, ’000342158300020’);
[11] Ding, C, DF Sun and KC Toh (2014). An introduction to a class of matrix cone programming. Mathematical Programming, 144, 141-179. genRefLink(16, ’S0217595916500251BIB011’, ’10.1007%252Fs10107-012-0619-7’); genRefLink(128, ’S0217595916500251BIB011’, ’000333158700006’);
[12] Gao, Y and DF Sun (2010). A majorized penalty approach for calibrating rank constrained correlation matrix problems. Technical report, NUS.
[13] Heuberger, C (2004). Inverse combinatorial optimization: A survey on problems, methods and results. Journal of Combinatorial Optimization, 8, 329-361. genRefLink(16, ’S0217595916500251BIB013’, ’10.1023%252FB%253AJOCO.0000038914.26975.9b’); genRefLink(128, ’S0217595916500251BIB013’, ’000223483800006’);
[14] Hong, J, Y Yang and LW Zhang (2011). Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach. Operations Research, 59, 617-630. genRefLink(16, ’S0217595916500251BIB014’, ’10.1287%252Fopre.1100.0910’); genRefLink(128, ’S0217595916500251BIB014’, ’000292639000007’);
[15] Horn, RA and CR Johnson (1985). Matrix Analysis. Cambridge University Press. genRefLink(16, ’S0217595916500251BIB015’, ’10.1017%252FCBO9780511810817’);
[16] Iyengar, G and W Kang (2005). Inverse conic programming and applications. Operations Research Letters, 33, 319-330. genRefLink(16, ’S0217595916500251BIB016’, ’10.1016%252Fj.orl.2004.04.007’); genRefLink(128, ’S0217595916500251BIB016’, ’000226143900016’); · Zbl 1140.90465
[17] Jiang, KF, DF Sun and KC Toh (2012). An inexact accelerated proximal gradient method for large scale linearly constrainted convex SDP. SIAM Journal on Optimization, 22, 1042-1064. genRefLink(16, ’S0217595916500251BIB017’, ’10.1137%252F110847081’); genRefLink(128, ’S0217595916500251BIB017’, ’000310214800016’);
[18] Jiang, Y, XT Xiao, LW Zhang and JZ Zhang (2011). A perturbation approach for a type of inverse linear programming problems. International Journal of Computer Mathematics, 88, 508-516. genRefLink(16, ’S0217595916500251BIB018’, ’10.1080%252F00207160903513003’); genRefLink(128, ’S0217595916500251BIB018’, ’000287923900008’);
[19] Li, Q and HD Qi (2011). A sequential semismooth Newton method for the nearest low-rank correlation matrix problem. SIAM Journal on Optimization, 21, 1641-1666. genRefLink(16, ’S0217595916500251BIB019’, ’10.1137%252F090771181’); genRefLink(128, ’S0217595916500251BIB019’, ’000298378500019’); · Zbl 1236.49070
[20] Luenberger, DG and YY Ye (2008). Linear and Nonlinear Programming, 2nd Edition, Springer.
[21] Meng, F, D Sun and G Zhao (2005). Semismoothness of solutions to generalized equations and the Moreau Yosida regularization. Mathematical Programming Series B, 104, 561-581. genRefLink(16, ’S0217595916500251BIB021’, ’10.1007%252Fs10107-005-0629-9’); genRefLink(128, ’S0217595916500251BIB021’, ’000232799700018’);
[22] Mordukhovich, BS (2006) Variational Analysis and Generalized Differentiation, I: Basic Theory. Berlin: Springer. genRefLink(16, ’S0217595916500251BIB022’, ’10.1007%252F3-540-31247-1’);
[23] Pang, JS, D Sun and J Sun (2003). Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research, 28, 39-63. genRefLink(16, ’S0217595916500251BIB023’, ’10.1287%252Fmoor.’); genRefLink(128, ’S0217595916500251BIB023’, ’000182045000002’); · Zbl 1082.90115
[24] Sun, DF (2006). The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Mathematics of Operations Research, 31, 761-776. genRefLink(16, ’S0217595916500251BIB024’, ’10.1287%252Fmoor.1060.0195’); genRefLink(128, ’S0217595916500251BIB024’, ’000243230800007’);
[25] Sun, DF, J Sun and LW Zhang (2008). The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Mathematical Programming, 114, 349-391. genRefLink(16, ’S0217595916500251BIB025’, ’10.1007%252Fs10107-007-0105-9’); genRefLink(128, ’S0217595916500251BIB025’, ’000254805300008’);
[26] Toh, KC and S Yun (2010). An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pacific Journal of Optimization, 6, 615-640. genRefLink(128, ’S0217595916500251BIB026’, ’000282924300009’); · Zbl 1205.90218
[27] Wang, SY, YJ Liu and Y Jiang (2014). A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial Management and Optimization, 10, 965-976. genRefLink(16, ’S0217595916500251BIB027’, ’10.3934%252Fjimo.2014.10.965’); genRefLink(128, ’S0217595916500251BIB027’, ’000328168300018’); · Zbl 1283.49038
[28] Wu, J, LW Zhang and Y Zhang (2014). Mathematical programs with semidefinite cone complementarity constraints: Constraint qualifications and optimality conditions. Set-Valued and Variational Analysis, 22, 155-187. genRefLink(16, ’S0217595916500251BIB028’, ’10.1007%252Fs11228-013-0242-7’); genRefLink(128, ’S0217595916500251BIB028’, ’000330977100007’);
[29] Xiao, XT, LW Zhang and JZ Zhang (2009). On convergence of augmented Lagrange method for inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 5, 319-339. genRefLink(16, ’S0217595916500251BIB029’, ’10.3934%252Fjimo.2009.5.319’); genRefLink(128, ’S0217595916500251BIB029’, ’000265190800010’);
[30] Xiao, XT, J Gu, LW Zhang and SW Zhang (2012). A sequential convex program method to DC program with joint chance constraints. Journal of Industrial Management and Optimization, 8, 733-747. genRefLink(16, ’S0217595916500251BIB030’, ’10.3934%252Fjimo.2012.8.733’); genRefLink(128, ’S0217595916500251BIB030’, ’000307834500016’); · Zbl 1288.65089
[31] Zhang, J and Z Liu (1996). Calculating some inverse linear programming problems. Journal of Computational and Applied Mathematics, 72, 261-273. genRefLink(16, ’S0217595916500251BIB031’, ’10.1016%252F0377-0427%252895%252900277-4’); genRefLink(128, ’S0217595916500251BIB031’, ’A1996VB49200005’);
[32] Zhang, J and Z Liu (1999). A further study on inverse linear programming problems. Journal of Computational and Applied Mathematics, 106, 345-359. genRefLink(16, ’S0217595916500251BIB032’, ’10.1016%252FS0377-0427%252899%252900080-1’); genRefLink(128, ’S0217595916500251BIB032’, ’000081088700009’);
[33] Zhang, J and Z Ma (1999). Solution structure of some inverse combinatorial optimization problems. Journal of Combinatorial Optimization, 3, 127-139. genRefLink(16, ’S0217595916500251BIB033’, ’10.1023%252FA%253A1009829525096’); genRefLink(128, ’S0217595916500251BIB033’, ’000081774600010’);
[34] Zhang, JZ and LW Zhang (2010). An augument Lagrangian method for a type of inverse quadratic programming problems. Applied Mathematics and Optimization, 61, 57-83. genRefLink(16, ’S0217595916500251BIB034’, ’10.1007%252Fs00245-009-9075-z’); genRefLink(128, ’S0217595916500251BIB034’, ’000272901800003’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.