×

zbMATH — the first resource for mathematics

Algorithm 950: Ncpol2sdpa – sparse semidefinite programming relaxations for polynomial optimization problems of noncommuting variables. (English) Zbl 1347.65110

MSC:
65K05 Numerical mathematical programming methods
65-04 Software, source code, etc. for problems pertaining to numerical analysis
90-04 Software, source code, etc. for problems pertaining to operations research and mathematical programming
90C22 Semidefinite programming
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] K. Cafuta, I. Klep, and J. Povh. 2011. NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optimiz. Meth. Softw. 26, 3, 363–380. · Zbl 1226.90063
[2] J. Cimprič. 2010. A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming. J. Math. Anal. Appl. 369, 2, 443–452. · Zbl 1205.90215
[3] K. Fujisawa, H. Sato, S. Matsuoka, T. Endo, M. Yamashita, and M. Nakata. 2012. High-performance general solver for extremely large-scale semidefinite programming problems. In Proceedings of SC-12, International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press, Los Alamitos, CA, 93:1–93:11.
[4] J. Helton, R. Miller, and M. Stankus. 2012. NCAlgebra: A Mathematica package for doing non-commuting algebra. http://math.ucsd.edu/∼ncalg/.
[5] D. Henrion and J. B. Lasserre. 2003. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29, 2, 165–194. · Zbl 1070.65549
[6] D. Henrion, J. B. Lasserre, and J. Löfberg. 2009. GloptiPoly 3: Moments, optimization and semidefinite programming. Optimiz. Meth. Softw. 24, 4–5, 761–779. · Zbl 1178.90277
[7] David Joyner, Ondřej Čertík, Aaron Meurer, and Brian E. Granger. 2012. Open source computer algebra systems: SymPy. ACM Commun. Comput. Alg. 45, 3/4, 225–234. · Zbl 1305.68357
[8] J. B. Lasserre. 2001. Global optimization with polynomials and the problem of moments. SIAM J. Optimiz. 11, 3, 796–817. · Zbl 1010.90061
[9] J. Löfberg. 2004. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of CACSD-04, IEEE International Symposium on Computer Aided Control Systems Design. 284–289.
[10] M. Navascués, A. García-Sáez, A. Acín, S. Pironio, and M.B. Plenio. 2013. A paradox in bosonic energy computations via semidefinite programming relaxations. New J. Phys. 15, 2, 023026.
[11] M. Navascués, S. Pironio, and A. Acín. 2008. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10, 7, 073013.
[12] M. Navascués, S. Pironio, and A. Acín. 2012. SDP relaxations for non-commutative polynomial optimization. In Handbook on Semidefinite, Conic and Polynomial Optimization, M. F. Anjos and J. B. Lasserre (Eds.), International Series in Operations Research & Management Science, Vol. 166, Springer, New York, 601–634. · Zbl 1334.90113
[13] S. Pironio, M. Navascués, and A. Acín. 2010. Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optimiz. 20, 5, 2157–2180. · Zbl 1228.90073
[14] P. Rostalski. 2012. http://math.berkeley.edu/philipp/Main/HomePage.
[15] G. Sagnol. 2012. Picos documentation. Tech. Rep. 12–48. Zuse Institut Berlin.
[16] L. Vandenberghe and S. Boyd. 1996. Semidefinite programming. SIAM Rev. 38, 1, 49–95. · Zbl 0845.65023
[17] Hayato Waki, Sunyoung Kim, Masakazu Kojima, Masakazu Muramatsu, and Hiroshi Sugimoto. 2008. Algorithm 883: SparsePOP—A sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35, 2, 15.
[18] M. Yamashita, K. Fujisawa, and M. Kojima. 2003. SDPARA: Semidefinite programming algorithm parallel version. Parall. Comput. 29, 8, 1053–1067.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.