×

zbMATH — the first resource for mathematics

Adaptive dynamic surface control based on fuzzy disturbance observer for drive system with elastic coupling. (English) Zbl 1347.93157
Summary: This paper proposes an adaptive control strategy by employing Dynamic Surface Control (DSC) technique and Fuzzy Disturbance Observer (FDO) for the two-inertia system with uncertainties and external disturbance. Firstly, the unknown elements including uncertainties and external disturbance are estimated by using a fuzzy disturbance observer which does not need a-priori information of these unknown dynamics. Next, the estimations of unknown disturbance are integrated into DSC design by using recursive feedbacks to damp torsional vibration. The ’explosion of complexity’ in conventional backstepping technique is avoided by introducing first-order filters. The stability analysis of the design scheme is verified based on the Lyapunov stability theory. All the signals in the closed-loop system are guaranteed to be uniformly ultimately bounded and the tracking error can be made arbitrarily small by adjusting the design parameters. Comparative simulations and experiments demonstrate the effectiveness and applicability of the proposed method.

MSC:
93C40 Adaptive control/observation systems
93B07 Observability
93C42 Fuzzy control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Tao, J.; Sadler, J., Constant speed control of a motor driven mechanism system, Mech. Mach. Theory, 30, 5, 737-748, (1995)
[2] Szabat, K.; Orlowska-Kowalska, T., Vibration suppression in a two-mass drive system using pi speed controller and additional feedbacks - comparative study, IEEE Trans. Ind. Electron., 54, 2, 1193-1206, (2007)
[3] O׳Sullivan, T. M.; Bingham, C. M.; Schofield, N., High-performance control of dual-inertia servo-drive systems using low-cost integrated saw torque transducers, IEEE Trans. Ind. Electron., 53, 4, 1226-1237, (2006)
[4] Thomsen, S.; Hoffmann, N.; Fuchs, F. W., Pi control, pi-based state space control, and model-based predictive control for drive systems with elastically coupled loads - a comparative study, IEEE Trans. Ind. Electron., 58, 8, 3647-3657, (2011)
[5] Cychowski, M.; Szabat, K.; Orlowska-Kowalska, T., Constrained model predictive control of the drive system with mechanical elasticity, IEEE Trans. Ind. Electron., 56, 6, 1963-1973, (2009)
[6] Orlowska-Kowalska, T.; Szabat, K., Neural-network application for mechanical variables estimation of a two-mass drive system, IEEE Trans. Ind. Electron., 54, 3, 1352-1364, (2007)
[7] Orlowska-Kowalska, T.; Szabat, K., Damping of torsional vibrations in two-mass system using adaptive sliding neuro-fuzzy approach, IEEE Trans. Ind. Inform., 4, 1, 47-57, (2008)
[8] Orlowska-Kowalska, T.; Dybkowski, M.; Szabat, K., Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors, IEEE Trans. Ind. Electron., 57, 2, 553-564, (2010)
[9] Szabat, K.; Tran-Van, T.; Kaminski, M., A modified fuzzy luenberger observer for a two-mass drive system, IEEE Trans. Ind. Inform., 11, 2, 531-539, (2015)
[10] Itoh, K.; Iwasaki, M.; Matsui, N., Optimal design of robust vibration suppression controller using genetic algorithms, IEEE Trans. Ind. Electron., 51, 5, 947-953, (2004)
[11] Iwasaki, M.; Miwa, M.; Matsui, N., Ga-based evolutionary identification algorithm for unknown structured mechatronic systems, IEEE Trans. Ind. Electron., 52, 1, 300-305, (2005)
[12] M. Tomizuka, Controller structure for robust high-speed/high-accuracy digital motion control, in: Proceedings of IEEE International Conference on Robotics and Automation, San Diego, 1995.
[13] Li, W.; Hori, Y., Vibration suppression using single neuron-based pi fuzzy controller and fractional-order disturbance observer, IEEE Trans. Ind. Electron., 54, 1, 117-126, (2007)
[14] Yun, J. N.; Su, J.; Kim, Y. I.; Kim, Y. C., Robust disturbance observer for two-inertia system, IEEE Trans. Ind. Electron., 60, 7, 2700-2710, (2013)
[15] Krstic, M.; Kokotovic, P. V.; Kanellakopoulos, I., Nonlinear and adaptive control design, (1995), John Wiley & Sons, Inc. New York · Zbl 0763.93043
[16] Sun, H.; Li, S.; Yang, J.; Guo, L., Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances, IET Control Theory Appl., 8, 17, 1852-1865, (2014)
[17] Sun, H.; Li, S.; Yang, J.; Zheng, W. X., Global output regulation for strict-feedback nonlinear systems with mismatched nonvanishing disturbances, Int. J. Robust Nonlinear Control, 25, 15, 2631-2645, (2015) · Zbl 1328.93120
[18] Li, S.; Sun, H.; Yang, J.; Yu, X., Continuous finite-time output regulation for disturbed systems under mismatching condition, IEEE Trans. Autom. Control, 60, 1, 277-282, (2015) · Zbl 1360.93255
[19] Na, J.; Ren, X.; Herrmann, G.; Qiao, Z., Adaptive neural dynamic surface control for servo systems with unknown dead-zone, Control Eng. Pract., 19, 11, 1328-1343, (2011)
[20] Sun, G.; Ren, X.; Chen, Q.; Li, D., A modified dynamic surface approach for control of nonlinear systems with unknown input dead zone, Int. J. Robust Nonlinear Control, 25, 8, 1145-1167, (2015) · Zbl 1317.93091
[21] Tong, S.-C.; Li, Y.-M.; Feng, G.; Li, T.-S., Observer-based adaptive fuzzy backstepping dynamic surface control for a class of mimo nonlinear systems, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 41, 4, 1124-1135, (2011)
[22] Zhang, T.; Ge, S., Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form, Automatica, 44, 7, 1895-1903, (2008) · Zbl 1149.93322
[23] Fei, J.; Zhou, J., Robust adaptive control of mems triaxial gyroscope using fuzzy compensator, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 42, 6, 1599-1607, (2012)
[24] Fei, J.; Yan, W., Adaptive control of mems gyroscope using global fast terminal sliding mode control and fuzzy-neural-network, Nonlinear Dyn., 78, 1, 103-116, (2014) · Zbl 1314.93031
[25] Li, Y.; Tong, S.; Liu, Y.; Li, T., Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach, IEEE Trans. Fuzzy Syst., 22, 1, 164-176, (2014)
[26] Li, Y.; Tong, S.; Li, T., Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot, Nonlinear Dyn., 70, 3, 2035-2048, (2012) · Zbl 1268.93109
[27] Kim, E., A fuzzy disturbance observer and its application to control, IEEE Trans. Fuzzy Syst., 10, 1, 77-84, (2002)
[28] Li, T.-S.; Tong, S.-C.; Feng, G., A novel robust adaptive-fuzzy-tracking control for a class of nonlinear multi-input/multi-output systems, IEEE Trans. Fuzzy Syst., 18, 1, 150-160, (2010)
[29] Li, Y.; Tong, S.; Li, T., Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation, IEEE Trans. Cybern., 45, 10, 2299-2308, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.