zbMATH — the first resource for mathematics

A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. (English) Zbl 1348.65071

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
Full Text: DOI arXiv
[1] J. Baglama, D. Calvetti, and L. Reichel, Algorithm 827: irbleigs: A MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix, ACM Trans. Math. Software, 29 (2003), pp. 337–348. · Zbl 1070.65529
[2] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist, Anasazi software for the numerical solution of large-scale eigenvalue problems, ACM Trans. Math. Software, 36 (2009), pp. 13:1–13:23. · Zbl 1364.65083
[3] M. Bollhöfer and Y. Notay, JADAMILU: A software code for computing selected eigenvalues of large sparse symmetric matrices, Comput. Phys. Comm., 177 (2007), pp. 951–964. · Zbl 1196.65072
[4] C. Campos and J. E. Roman, Strategies for spectrum slicing based on restarted Lanczos methods, Numer. Algorithms, 60 (2012), pp. 279–295. · Zbl 1245.65040
[5] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comp., 30 (1976), pp. 772–795. · Zbl 0345.65021
[6] P. J. Davis, Interpolation and Approximation, Blaisdell, Waltham, MA, 1963. · Zbl 0111.06003
[7] H. R. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM J. Sci. Comput., 34 (2012), pp. A2220–A2246. · Zbl 1253.65053
[8] L. Giraud, J. Langou, M. Rozložník, and J. Van Den Eshof, Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Numer. Math., 101 (2005), pp. 87–100. · Zbl 1075.65060
[9] L. Giraud, J. Langou, and M. Rozloznik, The loss of orthogonality in the Gram-Schmidt orthogonalization process, Comput. Math. Appl., 50 (2005), pp. 1069–1075. · Zbl 1085.65037
[10] V. Hernández, J. E. Román, A. Thomás, and V. Vidal, A Survey of Software for Sparse Eigenvalue Problems, Tech. report, Universidad Politecnica De Valencia, 2007.
[11] V. Hernández, J. E. Román, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351–362. · Zbl 1136.65315
[12] L. O. Jay, H. Kim, Y. Saad, and J. R. Chelikowsky, Electronic structure calculations for plane-wave codes without diagonalization, Comput. Phys. Comm., 118 (1999), pp. 21–30. · Zbl 1001.65038
[13] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang, Y. Saad, and J. R. Chelikowsky, PARSEC: The pseudopotential algorithm for real-space electronic structure calculations: Recent advances and novel applications to nano-structure, Phys. Stat. Sol. (B), 243 (2006), pp. 1063–1079.
[14] C. Lanczos, Applied Analysis, Dover, New York, 1988. · Zbl 0111.12403
[15] R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821. · Zbl 0863.65016
[16] L. Lin, Y. Saad, and C. Yang, Approximating spectral densities of large matrices, SIAM Rev., 58 (2016), pp. 34–65. · Zbl 1338.15026
[17] C. C. Paige, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices, Ph.D. thesis, University of London, 1971.
[18] C. C. Paige, Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Appl., 10 (1972), pp. 373–381. · Zbl 0253.65020
[19] C. C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, J. Inst. Math. Appl., 18 (1976), pp. 341–349. · Zbl 0347.65018
[20] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Appl. Math. 20, SIAM, Philadelphia, 1998. · Zbl 0885.65039
[21] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79 (2009), 115112.
[22] T. J. Rivlin, An Introduction to the Approximation of Functions, Dover, New York, 2010. · Zbl 0189.06601
[23] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM J. Sci. Statist Comput., 6 (1985), pp. 865–881. · Zbl 0601.65019
[24] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM. Philadelphia, 2003. · Zbl 1031.65046
[25] Y. Saad, Filtered conjugate residual-type algorithms with applications, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 845–870. · Zbl 1120.65046
[26] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Classics in Appl. Math. 66, SIAM, Philadelphia, 2011.
[27] Y. Saad, Analysis of subspace iteration for eigenvalue problems with evolving matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 103–122.
[28] Y. Saad, J. R. Chelikowsky, and S. M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Rev., 52 (2010), pp. 3–54. · Zbl 1185.82004
[29] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math., 159 (2003), pp. 119–128. · Zbl 1037.65040
[30] H. D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984), pp. 115–142. · Zbl 0546.65017
[31] A. Stathopoulos and J. R. McCombs, PRIMME: Preconditioned iterative multimethod eigensolver: Methods and software description, ACM Trans. Math. Software, 37 (2010), pp. 21:1–21:30. · Zbl 1364.65087
[32] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245. · Zbl 0924.65028
[33] E. L. Stiefel, Kernel polynomials in linear algebra and their numerical applications, U.S. Nat. Bur. Standards Appl. Math. Ser., 49 (1958), pp. 1–22.
[34] E. Vecharynski, C. Yang, and J. E. Pask, A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a hermitian matrix, J. Comput. Phys., 290 (2015), pp. 73–89. · Zbl 1349.65133
[35] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616. · Zbl 0969.65030
[36] Y. Xi and Y. Saad, Least-Squares Rational Filters for the Solution of Interior Eigenvalue Problems, Tech. report, Department of Computer Science and Engineering, University of Minnesota, 2015.
[37] I. Yamazaki, Z. Bai, H. Simon, L.-W. Wang, and K. Wu, Adaptive projection subspace dimension for the thick-restart Lanczos method, ACM Trans. Math. Software, 37 (2010), pp. 27:1–27:18. · Zbl 1364.65089
[38] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Self-consistent-field calculation using Chebyshev-filtered subspace iteration, J. Comput. Phys., 219 (2006), pp. 172–184. · Zbl 1105.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.