DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). (English) Zbl 1348.76005

Summary: DualSPHysics is a hardware accelerated Smoothed Particle Hydrodynamics code developed to solve free-surface flow problems. DualSPHysics is an open-source code developed and released under the terms of GNU General Public License (GPLv3). Along with the source code, a complete documentation that makes easy the compilation and execution of the source files is also distributed. The code has been shown to be efficient and reliable. The parallel power computing of Graphics Computing Units (GPUs) is used to accelerate DualSPHysics by up to two orders of magnitude compared to the performance of the serial version.


76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
65Y10 Numerical algorithms for specific classes of architectures
Full Text: DOI


[1] Gómez-Gesteira, M.; Rogers, B. D.; Dalrymple, R. A.; Crespo, A. J.C., State-of-the-art of classical SPH for free-surface flows, J. Hydraulic Res., 48, 6-27, (2010)
[2] Gómez-Gesteira, M.; Rogers, B. D.; Crespo, A. J.C.; Dalrymple, R. A.; Narayanaswamy, M.; Domínguez, J. M., Sphysics—development of a free-surface fluid solver- part 1: theory and formulations, Comput. Geosci., 48, 289-299, (2012)
[3] Gómez-Gesteira, M.; Crespo, A. J.C.; Rogers, B. D.; Dalrymple, R. A.; Domínguez, J. M.; Barreiro, A., Sphysics—development of a free-surface fluid solver—part 2: efficiency and test cases, Comput. Geosci., 48, 300-307, (2012)
[4] Dalrymple, R. A.; Rogers, B. D., Numerical modeling of water waves with the SPH method, Coastal Eng., 53, 141-147, (2006)
[5] Crespo, A. J.C.; Gómez-Gesteira, M.; Dalrymple, R. A., Modeling dam break behavior over a wet bed by a SPH technique, J. Waterway, Port, Coastal Ocean Eng., 134, 6, 313-320, (2008)
[6] Gómez-Gesteira, M.; Dalrymple, R., Using a 3D SPH method for wave impact on a tall structure, J. Waterway, Port, Coastal Ocean Eng., 130, 2, 63-69, (2004)
[7] Rogers, B. D.; Dalrymple, R. A.; Stansby, P. K., Simulation of caisson breakwater movement using SPH, J. Hydraulic Res., 48, 135-141, (2010)
[8] Vacondio, R.; Rogers, B. D.; Stansby, P. K.; Mignosa, P., A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modelling, Internat. J. Numer. Methods Fluids, 71, 850-872, (2012)
[9] Vacondio, R.; Rogers, B. D.; Stansby, P. K.; Mignosa, P., Shallow water SPH for flooding with dynamic particle coalescing and splitting, Adv. Water Resour., 58, 10-23, (2013) · Zbl 1352.76100
[10] Herault, A.; Bilotta, G.; Dalrymple, R. A., SPH on GPU with CUDA, J. Hydraulic Res., 48, 74-79, (2010)
[11] Dominguez, J. M.; Crespo, A. J.C.; Gómez-Gesteira, M., Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method, Comput. Phys. Comm., 184, 3, 617-627, (2013)
[12] Crespo, A. J.C.; Dominguez, J. M.; Barreiro, A.; Gómez-Gesteira, M.; Rogers, B. D., GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods, PLoS ONE, 6, 6, e20685, (2011)
[13] Barreiro, A.; Crespo, A. J.C.; Domínguez, J. M.; Gómez-Gesteira, M., Smoothed particle hydrodynamics for coastal engineering problems, Comput. Struct., 120, 15, 96-106, (2013)
[14] Altomare, C.; Crespo, A. J.C.; Rogers, B. D.; Domínguez, J. M.; Gironella, X.; Gómez-Gesteira, M., Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics, Comput. Struct., 130, 34-45, (2014)
[15] Vacondio, R.; Mignosa, P.; Pagani, S., 3D SPH numerical simulation of the wave generated by the vajont rockslide, Adv. Water Resour., 59, 146-156, (2013)
[16] Cherfils, J. M.; Pinon, G., Rivoalen, JOSEPHINE: A parallel SPH code for free-surface flows, Comput. Phys. Comm., 183, 7, 1468-1480, (2012)
[17] http://www.gpusph.org/ (accessed 23.07.2014).
[18] http://canal.etsin.upm.es/aquagpusph/ (accessed 23.07.2014).
[19] http://isph.sourceforge.net/ (accessed 23.07.2014).
[20] http://www.mpa-garching.mpg.de/gadget/ (date access 23-07-2014).
[21] https://code.google.com/p/pysph/ (accessed 23.07.2014).
[22] http://www.sph-flow.com/ (accessed 23.07.2014).
[23] http://www.simpartix.com/ (accessed 23.07.2014).
[24] http://www.itm.uni-stuttgart.de/research/pasimodo/pasimodo_en.php (accessed 23.07.2014).
[25] Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574, (1992)
[26] Liu, G. R., Mesh free methods: moving beyond the finite element method, (2003), CRC Press · Zbl 1031.74001
[27] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 1703-1759, (2005)
[28] Violeau, D., Fluid mechanics and the SPH method: theory and applications, (2012), Oxford University Press · Zbl 1247.76001
[29] Monaghan, J. J., SPH without tensile instability, J. Comput. Phys., 159, 290-311, (2000) · Zbl 0980.76065
[30] Wendland, H., Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 389-396, (1995) · Zbl 0838.41014
[31] Lo, E. Y.M.; Shao, S., Simulation of near-Shore solitary wave mechanics by an incompressible SPH method, Appl. Ocean Res., 24, 275-286, (2002)
[32] Gotoh, H.; Shibihara, T.; Hayashii, M., Subparticle-scale model for the MPS method-Lagrangian flow model for hydraulic engineering, Comput. Fluid Dynam. J., 9, 339-347, (2001)
[33] Molteni, D.; Colagrossi, A., A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Comput. Phys. Comm., 180, 6, 861-872, (2009) · Zbl 1198.76108
[34] Antuono, M.; Colagrossi, A.; Marrone, S., Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Comm., 183, (2012) · Zbl 1258.76123
[35] Monaghan, J. J., Simulating free surface flows with SPH, J. Comput. Phys., 110, 399-406, (1994) · Zbl 0794.76073
[36] Monaghan, J. J.; Cas, R. A.F.; Kos, A. M.; Hallworth, M., Gravity currents descending a ramp in a stratified tank, J. Fluid Mech., 379, 39-70, (1999) · Zbl 0938.76506
[37] Batchelor, G. K., Introduction to fluid dynamics, (1974), Cambridge University Press U.K · Zbl 0152.44402
[38] Monaghan, J. J., On the problem of penetration in particle methods, J. Comput. Phys., 82, 1-15, (1989) · Zbl 0665.76124
[39] Verlet, L., Computer experiments on classical fluids. I. thermodynamical properties of lennard-Jones molecules, Phys. Rev., 159, 98-103, (1967)
[40] Leimkuhler, B. J.; Reich, S.; Skeel, R. D., Integration methods for molecular dynamic IMA volume in mathematics and its application, (1996), Springer
[41] Monaghan, J. J.; Kos, A., Solitary waves on a cretan beach, J. Waterway, Port Coastal Ocean Eng., 125, 3, 145-154, (1999)
[42] Crespo, A. J.; Gómez-Gesteira, M.; Dalrymple, R. A., Boundary conditions generated by dynamic particles in SPH methods, CMC: Comput., Mater. Contin., 5, 3, 173-184, (2007) · Zbl 1153.74383
[43] Monaghan, J. J.; Kos, A.; Issa, N., Fluid motion generated by impact, J. Waterway, Port, Coastal Ocean Eng., 129, 250-259, (2003)
[44] Dominguez, J. M.; Crespo, A. J.C.; Gómez-Gesteira, M.; Marongiu, J. C., Neighbour lists in smoothed particle hydrodynamics, Internat. J. Numer. Methods Fluids, 67, 2026-2042, (2011) · Zbl 1426.76595
[45] Purcell, T. J.; Buck, I.; Mark, W. R.; Hanrahan, P., Ray tracing on programmable graphics hardware, ACM Trans. Graphics, 21, 3, 703-712, (2002)
[46] Domínguez, J. M.; Crespo, A. J.C.; Valdez-Balderas, D.; Rogers, B. D.; Gómez-Gesteira, M., New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters, Comput. Phys. Comm., 184, 1848-1860, (2013)
[47] J.M. Domínguez, A.J.C. Crespo, A. Barreiro, M. Gómez-Gesteira, B.D. Rogers, Efficient implementation of double precision in GPU computing to simulate realistic cases with high resolution, in: Proceedings of the 9th SPHERIC, 2014.
[48] Vacondio, R.; Rogers, B. D.; Stansby, P. K.; Mignosa, P.; Feldman, J., Variable resolution for SPH: a dynamic particle coalescing and splitting scheme, Comput. Methods Appl. Mech. Engrg., 256, 132-148, (2013) · Zbl 1352.76100
[49] Fourtakas, G.; Rogers, B. D.; Laurence, D., Modelling sediment suspension in industrial tanks using SPH, La Houille Blanche, 2, 39-45, (2013)
[50] A. Mokos, B.D. Rogers, P.K. Stansby, J.M. Domínguez, A multi-phase particle shifting algorithm for SPH simulations for violent hydrodynamics on a GPU, in: Proceedings of the 9th SPHERIC, 2014.
[51] G. Fourtakas, J.M. Domínguez, R. Vacondio, A. Nasar, B.D. Rogers, Local Uniform STencil (LUST) Boundary Conditions for 3-D Irregular Boundaries in DualSPHysics, in: Proceedings of the 9th SPHERIC, 2014.
[52] R. Canelas, R.M.L. Ferreira, J.M. Domínguez, A.J.C. Crespo, Modelling of wave impacts on harbour structures and objects with SPH and DEM, in: Proceedings of the 9th SPHERIC, 2014.
[53] S.M. Longshaw, B.D. Rogers, P.K. Stansby, Whale to turbine impact using the GPU based SPH-LSM method, in: Proceedings of the 9th SPHERIC, 2014.
[54] C. Altomare, T. Suzuki, J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, Coupling between SWASH and SPH for real coastal problems, in: Proceedings of the 9th SPHERIC, 2014.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.