×

zbMATH — the first resource for mathematics

Identification, characterization and evolution of non-local quasi-Lagrangian structures in turbulence. (English) Zbl 1348.76084
Summary: The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed. The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition, they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution. The improving understanding of the quasi-Lagrangian structures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.

MSC:
76F20 Dynamical systems approach to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Taylor, GI, Diffusion by continuous movements, Proc. Lond. Math. Soc., 20, 196-212, (1922) · JFM 48.0961.01
[2] Toschi, F; Bodenschatz, E, Lagrangian properties of particles in turbulence, Annu. Rev. Fluid Mech., 41, 375-404, (2009) · Zbl 1157.76020
[3] Yeung, PK, Lagrangian investigations of turbulence, Annu. Rev. Fluid Mech., 34, 115-142, (2002) · Zbl 1047.76027
[4] Sawford, B, Turbulent relative dispersion, Annu. Rev. Fluid Mech., 33, 289-317, (2001) · Zbl 1008.76024
[5] Yang, Y; He, G-W; Wang, L-P, Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation, J. Turbul., 9, 8, (2008) · Zbl 1273.76234
[6] Pumir, A; Shraiman, BI; Chertkov, M, Geometry of Lagrangian dispersion in turbulence, Phys. Rev. Lett., 85, 5324-5327, (2000) · Zbl 1032.76024
[7] Xu, H; Pumir, A; Bodenschatz, E, The pirouette effect in turbulent flows, Nat. Phys., 7, 709-712, (2011)
[8] Batchelor, GK, Diffusion in a field of homogeneous turbulence. II. the relative motion of particles, Proc. Camb. Philos. Soc., 48, 345-362, (1952) · Zbl 0046.42106
[9] Pope, SB, The evolution of surfaces in turbulence, Int. J. Eng. Sci., 26, 445-469, (1988) · Zbl 0641.76054
[10] Meneveau, C, Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows, Annu. Rev. Fluid Mech., 43, 219-245, (2011) · Zbl 1299.76088
[11] Chu, Y-B; Lu, X-Y, Topological evolution in compressible turbulent boundary layers, J. Fluid Mech., 733, 414-438, (2013) · Zbl 1294.76175
[12] Wang, L-P; Maxey, MR, Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech., 256, 27-68, (1993)
[13] Sreenivasan, KR; Schumacher, J, Lagrangian views on turbulent mixing of passive scalars, Philos. Trans. R. Soc. A, 368, 1561-1577, (2010) · Zbl 1192.76021
[14] Warhaft, Z, Passive scalars in turbulent flows, Annu. Rev. Fluid Mech., 32, 203-240, (2000) · Zbl 0988.76042
[15] Pope, SB, Turbulent premixed flames, Annu. Rev. Fluid Mech., 19, 237-270, (1987)
[16] Peng, J; Dabiri, JO, An overview of a Lagrangian method for analysis of animal wake dynamics, J. Exp. Biol., 211, 280-287, (2008)
[17] Haller, G, Lagrangian coherent structures, Annu. Rev. Fluid Mech., 47, 137-162, (2015)
[18] Yang, Y; Pullin, DI; Bermejo-Moreno, I, Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence, J. Fluid Mech., 654, 233-270, (2010) · Zbl 1193.76062
[19] Yang, Y; Pullin, DI, Geometric study of Lagrangian and Eulerian structures in turbulent channel flow, J. Fluid Mech., 674, 67-92, (2011) · Zbl 1241.76289
[20] Tsinober, A.: An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer, Berlin (2009) · Zbl 1177.76001
[21] Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen welche den Wribelbewegungen ensprechen. J. Reine Angew. Math. 55, 25-55 (1858) (in German) · Zbl 1398.76084
[22] Davidson, P.A.: An Introduction to Magnetohydrodynamicsa. Cambridge University Press, Cambridge (2001) · Zbl 0974.76002
[23] Kida, S; Takaoka, M, Vortex reconnection, Annu. Rev. Fluid Mech., 26, 169-189, (1994) · Zbl 0802.76016
[24] Biskamp, D.: Magnetic Reconnections in Plasmas. Cambridge University Press, Cambridge (2000)
[25] Luo, K., Shao, C.X., Yang, Y., et al.: Direct numerical simulation of droplet breakup in homogeneous isotropic turbulence using level set method: The effects of Weber number and volume fraction (under review)
[26] Yang, Y; Pullin, DI, On Lagrangian and vortex-surface fields for flows with Taylor-Green and kida-pelz initial conditions, J. Fluid Mech., 661, 446-481, (2010) · Zbl 1205.76069
[27] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003) · Zbl 1026.76001
[28] Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000) · Zbl 0955.76002
[29] Yang, Y; Pullin, DI, Evolution of vortex-surface fields in viscous Taylor-Green and kida-pelz flows, J. Fluid Mech., 685, 146-164, (2011) · Zbl 1241.76143
[30] Hamlington, PE; Poludnenko, AY; Oran, ES, Interaction between turbulence and flames in premixed reacting flows, Phys. Fluids, 23, 125111, (2011)
[31] Robinson, SK, Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601-639, (1991)
[32] Lee, CB; Wu, JZ, Transition in wall-bounded flows, Appl. Mech. Rev., 61, 030802, (2008) · Zbl 1146.76601
[33] Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, 193-208 (1988) · Zbl 0744.76063
[34] Chong, MS; Perry, AE; Cantwell, BJ, A general classification of three-dimensional flow fields, Phys. Fluids A, 2, 765-777, (1990)
[35] Jeong, J; Hussain, F, On the identification of a vortex, J. Fluid Mech., 285, 69-94, (1995) · Zbl 0847.76007
[36] Zhou, J; Adrian, RJ; Balachandar, S; etal., Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 353-396, (1999) · Zbl 0946.76030
[37] LeHew, JA; Guala, M; MeKeon, BJ, Time-resolved measurements of coherent structures in the turbulent boundary layer, Exp. Fluids, 54, 1508, (2013)
[38] Lorensen, WE; Cline, HE, Marching cubes: A high resolution 3D surface construction algorithm, Comput. Graph., 21, 163-169, (1987)
[39] Pijl, SP; Segal, A; Vuik, C; etal., A mass-conserving level-set method for modeling of multi-phase flows, Int. J. Numer. Meth. Fluids, 47, 339-361, (2005) · Zbl 1065.76160
[40] Luo, K; Shao, CX; Yang, Y; etal., A mass conserving level set method for detailed numerical simulation of liquid atomization, J. Comput. Phys., 298, 495-519, (2015) · Zbl 1349.76847
[41] Pullin, DI; Yang, Y, Whither vortex tubes?, Fluid Dyn. Res., 46, 0141618, (2014)
[42] Krauskopf, B; Osinga, HM; Doedel, EJ; etal., A survey of methods for computing (un)stable manifold of vector fields, Int. J. Bifurcat. Chaos, 15, 763-791, (2005) · Zbl 1086.34002
[43] He, P., Yang, Y.: Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals (under review)
[44] Haller, G, Distinguished material surfaces and coherent structures in three-dimensional fluid flows, Phys. D, 149, 248-277, (2001) · Zbl 1015.76077
[45] Green, MA; Rowley, CW; Haller, G, Detection of Lagrangian coherent structures in three-dimensional turbulence, J. Fluid Mech., 572, 111-120, (2007) · Zbl 1111.76025
[46] Blazevski, D; Haller, G, Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows, Phys. D, 273-274, 46-62, (2014) · Zbl 1341.37014
[47] Wang, L; Peters, N, The length-scale distribution function of the distance between extremal points in passive scalar turbulence, J. Fluid Mech., 554, 457-475, (2006) · Zbl 1156.76405
[48] Wang, L, On properties of fluid turbulence along streamlines, J. Fluid Mech., 648, 183-203, (2010) · Zbl 1189.76296
[49] Wang, L, Analysis of the Lagrangian path structures in fluid turbulence, Phys. Fluids, 26, 045104, (2014)
[50] Pullin, DI; Saffman, PG, Vortex dynamics in turbulence, Annu. Rev. Fluid Mech., 30, 31-51, (1998) · Zbl 1398.76084
[51] Berkooz, G; Holmes, P; Lumley, JL, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575, (1993)
[52] Schmid, PJ, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28, (2010) · Zbl 1197.76091
[53] Farge, M, Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., 24, 395-457, (1992) · Zbl 0743.76042
[54] Bermejo-Moreno, I., Pullin, D.I.: On the non-local geometry of turbulence. J. Fluid Mech. 603, 101-135 (2008) · Zbl 1151.76522
[55] Candès, E., Demanet, L., Donoho, D., et al.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861-899 (2006) · Zbl 1122.65134
[56] Bermejo-Moreno, I; Pullin, DI; Horiuti, K, Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence, J. Fluid Mech., 620, 121-166, (2009) · Zbl 1156.76406
[57] Leung, T; Swaminathan, N; Davidson, PA, Geometry and interaction of structures in homogeneous isotropic turbulence, J. Fluid Mech., 710, 453-481, (2012) · Zbl 1275.76120
[58] Mishra, M; Liu, X; Skote, M; etal., Kolmogorov spectrum consistent optimization for multi-scale flow decomposition, Phys. Fluids, 26, 055106, (2014)
[59] Adrian, RJ, Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 041301, (2007) · Zbl 1146.76307
[60] Zheng, W., Yang, Y., Chen, S.: Evolutionary geometry of Lagrangian structures in a transitional boundary layer (under review) · Zbl 0536.76034
[61] Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, New York (1976) · Zbl 0325.76063
[62] Perry, AE; Chong, MS, On the mechanism of wall turbulence, J. Fluid Mech., 119, 173-217, (1982) · Zbl 0517.76057
[63] Perry, AE; Henbest, S; Chong, MS, A theoretical and experimental-study of wall turbulence, J. Fluid Mech., 165, 163-199, (1986) · Zbl 0597.76052
[64] Sharma, AS; McKeon, BJ, On coherent structure in wall turbulence, J. Fluid Mech., 728, 196-238, (2013) · Zbl 1291.76173
[65] Chung, D; Pullin, DI, Large-eddy simulation and wall modelling of turbulent channel flow, J. Fluid Mech., 631, 281-309, (2009) · Zbl 1181.76088
[66] Fung, Y.C.: A First Course in Continuum Mechancis, 3rd edn. Prentice-Hall, Englewood Cliffs (1994)
[67] Goto, S; Kida, S, Reynolds-number dependence of line and surface stretching in turbulence: folding effects, J. Fluid Mech., 586, 59-81, (2007) · Zbl 1120.76024
[68] Zhang, P, An analysis of head-on droplet collision with large deformation in gaseous medium, Phys. Fluids, 23, 042102, (2011)
[69] Crandall, MG; Lions, PL, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277, 1-42, (1983) · Zbl 0599.35024
[70] Lundgren, TS, Strained spiral vortex model for turbulent fine structure, Phys. Fluid, 25, 2193-2203, (1982) · Zbl 0536.76034
[71] Zhao, Y., Yang, Y., Chen, S.: Evolution of material surfaces in the temporal transition in channel flow (under review) · Zbl 0046.42106
[72] Wang, Y; Huang, W; Xu, C, On hairpin vortex generation from near-wall streamwise vortices, Acta. Mech. Sin., 31, 139-152, (2015) · Zbl 1346.76034
[73] Theodorsen, T.: Mechanism of turbulence. In: Proceedings of the Second Midwestern Conference on Fluid Mechanics, March 17-19, 1-18. Ohio State University, Columbus (1952) · Zbl 1346.76034
[74] Girimaji, SS; Pope, SB, Material-element deformation in isotropic turbulence, J. Fluid Mech., 220, 427-458, (1990)
[75] Girimaji, SS; Pope, SB, Propagating surfaces in isotropic turbulence, J. Fluid Mech., 234, 247-277, (1992) · Zbl 0744.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.