×

zbMATH — the first resource for mathematics

Enhanced velocity mixed finite element methods for modeling coupled flow and transport on non-matching multiblock grids. Analysis and applications to transport of reactive species in multiphase flow through porous mediaEnhanced velocity mixed finite element methods for modeling coupled flow and transport on non-matching multiblock grids analysis and applications to transport of reactive species in multiphase flow through porous media. (Enhanced velocity mixed finite element methods for modeling coupled flow and transport on non-matching multiblock grids analysis and applications to transport of reactive species in multiphase flow through porous media.) (English) Zbl 1348.76101
Summary: The enhanced velocity mixed finite element method, due to J. A. Wheeler et al. [Comput. Geosci. 6, No. 3–4, 315–332 (2002; Zbl 1023.76023)], is analyzed and extended to the problem of modeling slightly compressible flow coupled to the transport of chemical species through porous media, on non-matching multiblock grids. Applications include modeling bio-remediation of heavy oil spills and many other subsurface hazardous wastes, angiogenesis in transition of tumors from dormant to malignant states, transport of contaminants in ground water flow, and acid injection from well bores to increase permeability of surrounding rock. The analysis and numerical examples presented here demonstrate convergence and computational efficiency of this method.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
76S05 Flows in porous media; filtration; seepage
76T99 Multiphase and multicomponent flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R.A.: Sobolev Spaces, Pure and Applied Mathematics. Academic, New York (1975)
[2] Arbogast, T., Cowsar, L., Wheeler, M.F., Yotov, I.: Mixed finite element methods on non-matching multi-block grids. SIAM J. Numer. Anal. 37(4), 1295–1315 (2000) · Zbl 1001.65126 · doi:10.1137/S0036142996308447
[3] Arbogast, T., Douglas, J., Jr., Hornung, U.: Modeling of naturally fractured reservoirs by formal homogenization techniques. In: Dautray, R. (ed.) Frontiers in Pure and Applied Mathematics, pp. 1–19. Elsevier, Amsterdam (1991) · Zbl 0727.76110
[4] Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite element methods for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 32(2), 828–852 (1997) · Zbl 0880.65084 · doi:10.1137/S0036142994262585
[5] Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit higher-order Godunov scheme for scalar conservation laws in two dimensions. J. Comput. Phys. 74, 1–24 (1988) · Zbl 0684.65088 · doi:10.1016/0021-9991(88)90065-4
[6] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991) · Zbl 0788.73002
[7] Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. SIAM, Philadelphia (2005)
[8] Christie, M.A., Blunt, M.J.; Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Eval. Eng. 4(4), 308–317 (2001)
[9] Dawson, C.N.: Godunov mixed methods for advection–diffusion equations in multi-dimensions. SIAM J. Numer. Anal. 30(5), 1315–1332 (1993) · Zbl 0791.65062 · doi:10.1137/0730068
[10] Dawson, C.N., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Meth. Appl. Mech. Eng. 193(23–26), 2565–2580 (2004) · Zbl 1067.76565 · doi:10.1016/j.cma.2003.12.059
[11] Dawson, C.N., Wheeler, M.F.: An operator-splitting method for advection-diffusion-reaction problems. In: The Mathematics of Finite Elements and Applications, pp. 463–482. Academic, London (1987)
[12] Durlofsky, L.: Upscaling and gridding of fine-scale geological models for flow simulation. In: Proceedings of the 8th International Conference on Reservoir Simulation, Stresa, Italy (1997)
[13] Eymard, R., Gallout, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. Elsevier/North Holland, Amsterdam (2000) · Zbl 0981.65095
[14] IPARSv2: Integrated Parallel and Accurate Reservoir Simulator. Center for Subsurface Modeling, ICES, The University of Texas at Austin, Austin, TX, TICAM01-25 (2000)
[15] Klie, H., Dawson, C.N., Wheeler, M.F., Woodward, C.: A parallel implicit cell-centered method for two-phase flow with a pre-conditioned Newton–Krylov solver. Comput. Geosci. 1(3–4), 215–249 (1997) · Zbl 0941.76062 · doi:10.1023/A:1011521413158
[16] Nedelec, J.C.: Mixed finite elements in \(\mathbb{R}\)3. Numer. Math. 35, 315–341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[17] Peszynska, M., Jenkins, E.W., Wheeler, M.F.: Boundary conditions for fully implicit two-phase model. In: Feng, X., Schulze, T.P. (eds.) Recent Advances in Numerical Methods for Partial Differential Equations and Applications. Contemporary Mathematics, vol. 306, pp. 85–106. American Mathematical Society, Providence (2002)
[18] Peszynska, M., Sun, S.: Multiphase Reactive Transport Module TRCHEM in IPARSv2, TICAM01-32. CSM, The University of Texas at Austin, Austin (2001)
[19] Raviart, R.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315 (1977) · Zbl 0362.65089
[20] Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 523–639. Elsevier, Amsterdam (1991) · Zbl 0875.65090
[21] Thomas, S.G.: On Some Problems in the Simulation of Flow and Transport Through Porous Media. Ph.D. thesis, The University of Texas at Austin, Austin, TX (2009). http://repositories.lib.utexas.edu/handle/2152/6575
[22] Wheeler, J., Wheeler, M.F., Yotov, I.: Enhanced velocity mixed finite element methods for flow in multiblock domains. Comput. Geosci. 6(3–4), 315–332 (2002) · Zbl 1023.76023 · doi:10.1023/A:1021270509932
[23] Wheeler, M.F.: A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973) · Zbl 0258.35041 · doi:10.1137/0710062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.