×

An evolving stag-hunt game with elimination and reproduction on regular lattices. (English) Zbl 1348.91048

Summary: Based on a regular lattice, we present an evolving Stag-Hunt game model to illustrate the persistence of cooperation in many real-world systems. In our model, starting from a regular lattice, at first agents play the Stag-Hunt game with each other and perform the strategy update same as the traditional game dynamics on graphs; After that, each player tries to cut off the link with the defective neighbor with the highest fitness and build a new link preferentially connected to a high-degree node; If an isolated node is eliminated from the system, a new player will be reproduced and inserted into the system so as to keep the system size constant. Large-scale numerical simulations indicate that the cooperation level can be greatly promoted compared to the standard stag-hunt game behaviors on regular lattices, and the link rewiring and node’s elimination and reproduction represent the co-evolution between the structure and game dynamics, which facilitates the cooperative clusters among nodes. Our model can, to some extent, characterize the realistic cases in which an individual often tries to avoid the future contact with a defective partner. Current findings are beneficial to help us to deeply understand the evolution of cooperation within many natural, social and economic systems.

MSC:

91A22 Evolutionary games
91A43 Games involving graphs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nowak, M. A., Evolutionary dynamics: exploring the equations of life (2006), MA: Harvard University Press: MA: Harvard University Press Cambridge · Zbl 1115.92047
[2] Sigmund, K., The calculus of selfishness (2010), NJ: Princeton University Press: NJ: Princeton University Press Princeton · Zbl 1189.91010
[3] Gintis, H., Game theory evolving (2000), NJ: Princeton University Press: NJ: Princeton University Press Princeton · Zbl 1159.91300
[4] Colman, A. M., Game theory and its applications in the social and biological sciences (1995), Oxford: Butterworth-Heinemann
[5] Hamilton, W. D., The genetical evolution of social behavior: I-II, J Theor Biol, 7, 1-52 (1964)
[6] Trivers, R. L., The evolution of reciprocal altruism, Q Rev Biol, 46, 35-37 (1971)
[7] Nowak, M. A.; Sigmund, K., Evolution of indirect reciprocity by image scoring, Nature, 393, 573-577 (1998)
[8] Panchanathan, K.; Boyd, R., Indirect reciprocity can stabilize cooperation without the second-order free rider problem, Nature, 432, 499-502 (2004)
[9] Traulsen, A.; Nowak, M. A., Evolution of cooperation by multilevel selection, Proc Natl Acad Sci (USA), 103, 10952-10955 (2006)
[10] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 826-829 (1992)
[11] Jiménez, R.; Lugo, H.; Cuesta, J. A.; Sánchez, A., Emergence and resilience of cooperation in the spatial prisoner’s dilemma via a reward mechanism, J Theor Biol, 250, 475-483 (2008) · Zbl 1398.91073
[12] Perc, M.; Szolnoki, A., Self-organization of punishment in structured populations, New J Phys, 14, 043013 (2012)
[13] Jin, Q.; Wang, Z.; Wang, Z.; Wang, Y.-L., Strategy changing penalty promotes cooperation in spatial prisoner’s dilemma game, Chaos Solitons Fract, 45, 395-401 (2012)
[14] Milinski, M.; Semmann, D.; krambeck, H. J., Reputation helps to solve the ‘tragedy of commons’, Nature, 415, 424-426 (2002)
[15] Wang, Z.; Yin, Z.-Y.; Wang, L.; Xia, C.-Y., Inferring reputation promotes the evolution of cooperation in spatial social dilemma games, PLoS ONE, 7, 7, e40218 (2012)
[16] Xia, C.-Y.; Ma, Z.-Q.; Wang, Y.-L.; Wang, J.-S.; Chen, Z.-Q., Enhancement of cooperation in prisoner’s dilemma game on weighted lattices, Physica A, 390, 4602-4609 (2011)
[17] Ma, Z.-Q.; Xia, C.-Y.; Sun, S.-W.; Wang, L.; Wang, H.-B.; Wang, J., Heterogeneous link weight promotes the cooperation in spatial prisoners’s dilemma, Int J Mod Phys C, 22, 1257-1268 (2011) · Zbl 1258.91023
[18] Wang, Z.; Perc, M., Aspiring to the fittest and promotion of cooperation in the prisoner’s dilemma game, Phys Rev E, 82, 021115 (2010)
[19] Perc, M.; Wang, Z., Heterogeneous aspirations promote cooperation in the prisoner’s dilemma game, PLoS ONE, 5, e15117 (2010)
[20] Helbing, D.; Yu, W., The outbreak of cooperation among success-driven individuals under noisy conditions, Proc Natl Acad Sci (USA), 106, 3680-3685 (2009)
[21] Vainstein, M. H.; Silva, A. T.C.; Arenzon, J. J., Does mobility decrease cooperation?, J Theor Biol, 244, 722-728 (2007) · Zbl 1450.92084
[22] Sicardi, E. A.; Fort, H.; Vainstein, M. H.; Arenzon, J. J., Random mobility and spatial structure often enhance cooperation, J Theor Biol, 256, 240-246 (2009) · Zbl 1400.91074
[23] Meloni, S.; Buscarino, A.; Fortuna, L.; Frasca, M.; Gómez-Gardenes, J.; Latora, V., Effects of mobility in a population of prisoner’s dilemma players, Phys Rev E, 79, 067101 (2009)
[24] Xia, C.-Y.; Meloni, S.; Moren, Y., Effects of environmental knowledge on cooperation and agglomeration in spatial PGG games, Adv Complex Syst, 15, 1250056 (2012)
[25] Lin, H.; Yang, D.-P.; Shuai, J.-W., Cooperation among mobile individuals with payoff expectation in the spatial prisoner’s dilemma games, Chaos Solitons Fract, 44, 153-159 (2011)
[26] Wang, Z.; Wang, Z.; Zhu, X.-D.; Arenzon, J. J., Cooperation and age structure in spatial games, Phys Rev E, 85, 011149 (2012)
[27] Szolnoki, A.; Perc, M., Coevolution of teaching activity promotes cooperation, New J Phys, 10, 043036 (2008)
[28] Tanimoto, J.; Brede, M.; Yamauchi, A., Network reciprocity by coexisting learning and teaching strategies, Phys Rev E, 85, 032101 (2012)
[29] Szolnoki, A.; Wang, Z.; Wang, J.-L.; Zhu, X.-D., Dynamically generated cyclic dominance in spatial prisoner’s dilemma games, Phys Rev E, 82, 036110 (2010)
[30] Chen, X.-J.; Fu, F.; Wang, L., Effects of learning activity on cooperation in evolutionary prisoner’s dilemma game, Int J Mod Phys C, 19, 1377-1387 (2008) · Zbl 1185.91033
[31] Szolnoki, A.; Wang, Z.; Perc, M., Wisdom of groups promotes cooperation in evolutionary social dilemmas, Sci Rep, 2, 369 (2012)
[32] Perc, M., Coherence resonance in a spatial prisoner’s dilemma game, New J Phys, 8, 22 (2006)
[33] Xu, Z.-J.; Wang, Z.; Zhang, L.-Z., Bounded rationality leads to equilibrium of public goods games, J Theor Biolo, 264, 19-23 (2010) · Zbl 1406.91059
[34] Xia, C.-Y.; Wang, J.; Wang, L.; Sun, S.-W.; Sun, J.-Q.; Wang, J.-S., Role of update dynamics in the collective cooperation on the spaital snowdrift games: beyond unconditional imitation and replicator dynamics, Chaos Solitons Fract, 45, 1239-1245 (2012)
[35] Xia, C.-Y.; Wang, L.; Wang, J.; Wang, J.-S., Behavior of collective cooperation yielded by two update rules in social dilemmas: combing Fermi and Moran rules, Commun Theor Phys, 58, 343-348 (2012) · Zbl 1264.91012
[36] Shigaki, K.; Tanimoto, J.; Wang, Z.; Kokubo, S.; Hagishima, A.; Ikegaya, N., Referring to the social performance promotes cooperation in spatial prisoner’s dilemma games, Phys Rev E, 86, 031141 (2012)
[37] Wang, Z.; Szolnoki, A.; Perc, M., If players are sparse social dilemmas are too: importance of percolation for evolution of cooperation, Sci Rep, 2, 369 (2012)
[38] Wang, Z.; Szolnoki, A.; Perc, M., Percolation threshold determines the optimal population density for public cooperation, Phys Rev E, 85, 037101 (2012)
[39] Watts, D. J.; Strogatz, S. H., Collective dynamics of śmall-worldńetworks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[40] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[41] Boccaletti, S.; Latora, V.; Moreno, Y.; Chaverz, M.; Hwang, D. U., Complex networks: structure and dynamics, Phys Rep, 424, 175-308 (2006) · Zbl 1371.82002
[42] Abramson, G.; Kuperman, M., Social games in a social network, Phys Rev E, 63, 030901(R) (2001)
[43] Santos, F. C.; Pacheco, J. M., Scale-free networks provide a unifying framework for the emergence of cooperation, Phys Rev Lett, 95, 098104 (2005)
[44] Gómez-Garden¨es, J.; Campillo, M.; Floría, L. M.; Moreno, Y., Dynamical organization of cooperation in complex topologies, Phys Rev Lett, 98, 108103 (2007)
[45] Szabó, G.; Fáth, G., Evolutionary games on graphs, Phys Rep, 446, 97-216 (2007)
[46] Roca C, P.; Cuesta, J. A.; Sánchez, Evolutionary game theory: temporal and spatial effects beyond replicator dynamics, Phys Rev Life, 6, 208-249 (2009)
[47] Wang, Z.; Szolnoki, A.; Perc, M., Evolution of public cooperation on interdependent networks: the impact of biased utility functions, EPL, 97, 48001 (2012)
[48] Gomez-Gardenes, J.; Reinares, I.; Arenas, A.; Floría, L. M., Evolution of cooperation in multiplex networks, Sci Rep, 2, 620 (2012)
[49] Wang, Z.; Szolnoki, A.; Perc, M., Interdependent network reciprocity in evolutionary games, Sci Rep, 3, 1183 (2013)
[50] Zimmermann, M. G.; Eguíluz, V.; Miguel, M. S., Coevolution of dynamical states and interactions in dynamic networks, Phys Rev E, 69, 065102R (2004)
[51] Szolnoki, A.; Perc, M., Promoting cooperation in social dilemmas via simple coevolutionary rules, Eur Phys J B, 67, 337-344 (2009) · Zbl 1188.91161
[52] Perc, M.; Szolnoki, A., Coevolutionary games-A mini review, BioSystems, 99, 109-125 (2010)
[53] Poncela, J.; Gomez-Gardenes, J.; Floria, L. M.; Sanchez, A.; Moreno, Y., Complex cooperative networks from evolutionary preferential attachment, PLoS ONE, 3, 6, e2449 (2008)
[54] Starnini, M.; Sánchez, A.; Poncela, J.; Moreno, Y., Coordination and growth: the stag hunter game on evolutionary networks, J Stat Mech, P05008 (2011)
[55] Skyrms, B., The stag hunt and the evolution of social structure (2004), Cambridge University Press: Cambridge University Press Cambridge
[56] van Baalen, M., The geometry of ecological interactions: simplifying spatial complexity, (Dieckmann, U.; Law, R.; Metz, J. A.J. (2000), Cambridge University Press: Cambridge University Press Cambridge)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.