×

zbMATH — the first resource for mathematics

A new difference scheme for the time fractional diffusion equation. (English) Zbl 1349.65261
Summary: In this paper we construct a new difference analog of the Caputo fractional derivative (called the \(L 2 - 1_\sigma\) formula). The basic properties of this difference operator are investigated and on its basis some difference schemes generating approximations of the second and fourth order in space and the second order in time for the time fractional diffusion equation with variable coefficients are considered. Stability of the suggested schemes and also their convergence in the grid \(L_2\)-norm with the rate equal to the order of the approximation error are proved. The obtained results are supported by the numerical calculations carried out for some test problems.

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
39A60 Applications of difference equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Nakhushev, A. M., Fractional calculus and its application, (2003), FIZMATLIT Moscow, (in Russian) · Zbl 1066.26005
[2] Oldham, K. B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004
[3] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[4] (Hilfer, R., Applications of Fractional Calculus in Physics, (2000), World Scientific Singapore) · Zbl 0998.26002
[5] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equation, (2006), Elsevier Amsterdam · Zbl 1092.45003
[6] Uchaikin, V. V., Method of fractional derivatives, (2008), Artishok Ul’janovsk, (in Russian) · Zbl 1151.82430
[7] Nigmatullin, R. R., Realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status Solidi, B Basic Res., 133, 1, 425-430, (1986)
[8] Chukbar, K. V., Stochastic transport and fractional derivatives, Zh. Eksp. Teor. Fiz., 108, 1875-1884, (1995)
[9] Zhang, Y. N.; Sun, Z. Z.; Liao, H. L., Finite difference methods for the time fractional diffusion equation on non-uniform meshs, J. Comput. Phys., 265, 195-210, (2014)
[10] Sun, Z. Z.; Wu, X. N., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193-209, (2006) · Zbl 1094.65083
[11] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1552-1553, (2007) · Zbl 1126.65121
[12] Alikhanov, A. A., Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation, (2013) · Zbl 1293.65118
[13] Shkhanukov-Lafishev, M. Kh.; Taukenova, F. I., Difference methods for solving boundary value problems for fractional differential equations, Comput. Math. Math. Phys., 46, 10, 1785-1795, (2006)
[14] Chen, C.; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equations, SIAM J. Sci. Comput., 32, 4, 1740-1760, (2010) · Zbl 1217.26011
[15] Alikhanov, A. A., Boundary value problems for the diffusion equation of the variable order in differential and difference settings, Appl. Math. Comput., 219, 3938-3946, (2012) · Zbl 1311.35332
[16] Delic, A.; Jovanovic, B. S., Numerical approximation of an interface problem for fractional in time diffusion equation, Appl. Math. Comput., 229, 467-479, (2014) · Zbl 1364.65161
[17] Du, R.; Cao, W. R.; Sun, Z. Z., A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 34, 2998-3007, (2010) · Zbl 1201.65154
[18] Gao, G. H.; Sun, Z. Z., A compact difference scheme for the fractional subdiffusion equations, J. Comput. Phys., 230, 586-595, (2011) · Zbl 1211.65112
[19] Zhang, Y. N.; Sun, Z. Z.; Wu, H. W., Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49, 2302-2322, (2011) · Zbl 1251.65132
[20] Lin, Y.; Li, X.; Xu, C., Finite difference/spectral approximations for the fractional cable equation, Math. Comput., 80, 1369-1396, (2011) · Zbl 1220.78107
[21] Li, X.; Xu, C., A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47, 2108-2131, (2009) · Zbl 1193.35243
[22] Gao, G. H.; Sun, Z. Z.; Zhang, H. W., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50, (2014) · Zbl 1349.65088
[23] Alikhanov, A. A., A priori estimates for solutions of boundary value problems for fractional-order equations, Differ. Equ., 46, 5, 660-666, (2010) · Zbl 1208.35161
[24] Samarskii, A. A.; Andreev, V. B., Difference methods for elliptic equation, (1976), Nauka Moscow, (in Russian) · Zbl 1310.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.