×

A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy. (English) Zbl 1349.65324

Summary: A novel and efficient algorithm is presented in this paper to deal with DNS of turbulent reacting flows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral accuracy. The temporal integration of the equations relies on an operating-split strategy, where chemical reactions are solved implicitly with a stiff solver and the convection-diffusion operators are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with high-order compact schemes, and a FFT based constant-coefficient spectral solver is employed to solve a variable-coefficient Poisson equation. The numerical implementation takes advantage of the 2DECOMP & FFT libraries developed by [1], which are based on a pencil decomposition method of the domain and are proven to be computationally very efficient. An enhanced pressure-correction method is proposed to speed up the achievement of machine precision accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary conditions. The software developed to implement the present algorithm is called HOLOMAC, and its numerical efficiency opens the way to deal with DNS of reacting flows to understand complex turbulent and chemical phenomena in flames.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76V05 Reaction effects in flows
80A32 Chemically reacting flows
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[2] Pitsch, H., Large eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech., 38, 453-482 (2006) · Zbl 1097.76042
[3] Gicquel, L. Y.M.; Staffelbach, G.; Poinsot, T., Large eddy simulations of gaseous flames in gas turbine combustion chambers, Prog. Energy Combust. Sci., 38, 782-817 (2012)
[4] Motheau, E.; Nicoud, F.; Poinsot, T., Mixed acoustic-entropy combustion instabilities in gas turbines, J. Fluid Mech., 749, 542-576 (2014)
[5] Franzelli, B.; Riber, E.; Sanjosé, M.; Poinsot, T., A two-step chemical scheme for large-eddy simulation of kerosene-air flames, Combust. Flame, 157, 1364-1373 (2010)
[6] Mukhopadhyay, S.; Abraham, J., Influence of heat release and turbulence on scalar dissipation rate in autoigniting \(n\)-heptane/air mixtures, Combust. Flame, 159, 2883-2895 (2012)
[7] de Charentenay, J.; Thévenin, D.; Zamuner, B., Comparison of direct numerical simulations of turbulent flames using compressible or low-Mach number formulations, Int. J. Numer. Methods Fluids, 39, 497-515 (2002) · Zbl 1101.80308
[8] Volpe, G., Performance of compressible flow codes at low Mach numbers, AIAA J., 31, 49-56 (1993) · Zbl 0775.76140
[9] Turkel, E., Preconditioned methods for solving the incompressible and low speed compressible equations, J. Comput. Phys., 72, 277-298 (1987) · Zbl 0633.76069
[10] Venkateswaran, S.; Merkle, C., Dual time stepping and preconditioning for unsteady computations, Article 078 pp. (1995), AIAA paper
[11] Shuen, J.-S.; Chen, K.-H.; Choi, Y., A coupled implicit method for chemical non-equilibrium flows at all speeds, J. Comput. Phys., 106, 306-318 (1993) · Zbl 0771.76051
[12] Lee, D., The design of local Navier-Stokes preconditioning for compressible flow, J. Comput. Phys., 144, 460-483 (1998) · Zbl 0935.76060
[13] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 135, 118-125 (1997) · Zbl 0899.76283
[14] Nicoud, F., Conservative high-order finite difference schemes for low-Mach number flows, J. Comput. Phys., 158, 71-97 (2000) · Zbl 0973.76068
[15] Knikker, R., A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows, Int. J. Numer. Methods Fluids, 66, 403-427 (2011) · Zbl 1338.76087
[16] van der Heul, D.; Vuik, C.; Wesseling, P., A conservative pressure-correction method for flow at all speeds, Comput. Fluids, 32, 1113-1132 (2003) · Zbl 1046.76033
[17] Nerinckx, K.; Vierendeels, J.; Dick, E., Mach-uniformity through the coupled pressure and temperature correction algorithm, J. Comput. Phys., 206, 597-623 (2005) · Zbl 1120.76300
[18] Cordier, F.; Degond, P.; Kumbaro, A., An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations, J. Comput. Phys., 231, 5685-5704 (2012) · Zbl 1277.76090
[19] Doom, J.; Hou, Y.; Mahesh, K., A numerical method for DNS/LES of turbulent reacting flows, J. Comput. Phys., 226, 1136-1151 (2007) · Zbl 1120.76027
[20] Sewall, E. A.; Tafti, D. K., A time-accurate variable property algorithm for calculating flows with large temperature variations, Comput. Fluids, 37, 51-63 (2008) · Zbl 1194.76185
[21] Majda, A.; Sethian, J., The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Technol., 42, 185-205 (1985)
[22] McMurtry, P. A.; Jou, W.-H.; Riley, J.; Metcalfe, R. W., Direct numerical simulations of a reacting mixing layer with chemical heat release, AIAA J., 24, 962-970 (1986)
[23] Cook, A. W.; Riley, J. J., Direct numerical simulation of a turbulent reactive plume on a parallel computer, J. Comput. Phys., 129, 263-283 (1996) · Zbl 0890.76049
[24] Najm, H. N.; Wyckoff, P. S.; Knio, O. M., A semi-implicit numerical scheme for reacting flow: I. Stiff chemistry, J. Comput. Phys., 143, 381-402 (1998) · Zbl 0936.76064
[25] Knio, O. M.; Najm, H. N.; Wyckoff, P. S., A semi-implicit numerical scheme for reacting flow: II. Stiff, operator-split formulation, J. Comput. Phys., 154, 428-467 (1999) · Zbl 0958.76061
[26] Day, M. S.; Bell, J. B., Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theory Model., 4, 535-556 (2000) · Zbl 0970.76065
[27] Safta, C.; Ray, J.; Najm, H. N., A high-order low-Mach number AMR construction for chemically reacting flows, J. Comput. Phys., 229, 9299-9322 (2010) · Zbl 1222.80024
[28] Yu, R.; Yu, J.; Bai, X.-S., An improved high-order scheme for DNS of low Mach number turbulent reacting flows based on stiff chemistry solver, J. Comput. Phys., 231, 5504-5521 (2012) · Zbl 1428.76084
[29] Giovangigli, V., Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology (1999), Birkhauser: Birkhauser Boston
[30] Poinsot, T.; Veynante, D., Theoretical and Numerical Combustion (2011)
[31] Ern, A.; Giovangigli, V., Fast and accurate multicomponent transport property evaluation, J. Comput. Phys., 120, 105-116 (1995) · Zbl 0938.76097
[32] Magin, T. E.; Degrez, G., Transport algorithms for partially ionized and unmagnetized plasmas, J. Comput. Phys., 198, 424-449 (2004) · Zbl 1116.76476
[33] Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B., Molecular Theory of Gases and Liquids (1969), John Wiley & Sons: John Wiley & Sons New York · Zbl 0057.23402
[34] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, vol. 14 (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0859.65067
[35] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503
[36] Duarte, M.; Descombes, S.; Tenaud, C.; Candel, S.; Massot, M., Time-space adaptive numerical methods for the simulation of combustion fronts, Combust. Flame, 160, 1083-1101 (2013)
[37] Najm, H. N.; Knio, O. M., Modeling low Mach number reacting flow with detailed chemistry and transport, J. Sci. Comput., 25, 263-287 (2005) · Zbl 1203.80025
[38] Verwer, J. G.; Sommeijer, B. P.; Hundsdorfer, W., RKC time-stepping for advection-diffusion-reaction problems, J. Comput. Phys., 201, 61-79 (2004) · Zbl 1059.65085
[39] Kee, R. J.; Rupley, F.; Meeks, E., CHEMKIN-III: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics (1996), Sandia National Laboratories, Technical report SAND96-8216
[40] Desjardins, O.; Blanquart, G.; Balarac, G.; Pitsch, H., High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys., 227, 7125-7159 (2008) · Zbl 1201.76139
[41] Laizet, S.; Lamballais, E., High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy, J. Comput. Phys., 228, 5989-6015 (2009) · Zbl 1185.76823
[42] Laizet, S.; Li, N., Incompact3d: a powerful tool to tackle turbulence problems with up to \(O(10^5)\) computational cores, Int. J. Numer. Methods Fluids, 67, 1735-1757 (2011) · Zbl 1419.76481
[43] Frigo, M.; Johnson, S., The design and implementation of FFTW3, Proc. IEEE, 93, 216-231 (2005)
[44] Brown, P. N.; Byrne, G. D.; Hindmarsh, A. C., Vode: a variable-coefficient ode solver, SIAM J. Sci. Stat. Comput., 10, 1038-1051 (1989) · Zbl 0677.65075
[45] Orlanski, I., A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 21, 251-269 (1976) · Zbl 0403.76040
[46] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 6011-6045 (2006) · Zbl 1122.76072
[47] Gresho, P. M., Incompressible fluid dynamics: some fundamental formulation issues, Annu. Rev. Fluid Mech., 23, 413-453 (1991) · Zbl 0717.76006
[48] Nicoud, F. C., Numerical study of a channel flow with variable properties, (Annual Research Briefs (1998), Center for Turbulence Research, NASA Ames/Stanford Univ.), 289-310
[49] Dodd, M. S.; Ferrante, A., A fast pressure-correction method for incompressible two-fluid flows, J. Comput. Phys., 273, 416-434 (2014) · Zbl 1351.76161
[50] Lele, S., Compact finite difference schemes with spectral like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[51] Gaitonde, D. V.; Visbal, M. R., High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI (1998), Technical report, DTIC Document
[52] Sankaran, R.; Hawkes, E.; Chen, J.; Lu, T.; Law, C. K., Structure of a spatially developing turbulent lean methane-air Bunsen flame, Proc. Combust. Inst., 31, 1291-1298 (2007)
[53] Colin, O.; Ducros, F.; Veynante, D.; Poinsot, T., A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, 12, 1843-1863 (2000) · Zbl 1184.76109
[54] Lessani, B.; Papalexandris, M. V., Time-accurate calculation of variable density flows with strong temperature gradients and combustion, J. Comput. Phys., 212, 218-246 (2006) · Zbl 1216.76048
[55] Dong, S.; Shen, J., A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible flows, J. Comput. Phys., 291, 254-278 (2015) · Zbl 1349.76198
[56] Raymond, W. H.; Kuo, H. L., A radiation boundary condition for multi-dimensional flows, Q. J. R. Meteorol. Soc., 110, 535-551 (1984)
[57] Billson, M.; Eriksson, L.-E.; Davidson, L., Acoustic source terms for the linearized Euler equations in conservative form, AIAA J., 43, 752-759 (2005)
[58] Peters, N.; Paczko, G.; Seiser, R.; Seshadri, K., Temperature cross-over and non-thermal runaway at two-stage ignition of \(n\)-heptane, Combust. Flame, 128, 38-59 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.