×

zbMATH — the first resource for mathematics

Review of summation-by-parts schemes for initial-boundary-value problems. (English) Zbl 1349.65336
Summary: High-order finite difference methods are efficient, easy to program, scale well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback has been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years has removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area.

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Kreiss, H.-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, XXIV, 3, (1972)
[2] Kreiss, H.-O.; Scherer, G., Finite element and finite difference methods for hyperbolic partial differential equations, (Mathematical Aspects of Finite Elements in Partial Differential Equations, (1974), Academic Press, Inc.) · Zbl 0355.65085
[3] Kreiss, H.-O.; Scherer, G., On the existence of energy estimates for difference approximations for hyperbolic systems, (1977), Dept. of Scientific Computing, Uppsala University, Technical report
[4] Strand, B., Summation by parts for finite difference approximations for \(d / d x\), J. Comput. Phys., 110, (1994) · Zbl 0792.65011
[5] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes, J. Comput. Phys., 111, 2, (1994) · Zbl 0832.65098
[6] Gustafsson, B.; Kreiss, H.-O.; Oliger, J., Time dependent problems and difference methods, (1995), John Wiley & Sons, Inc.
[7] Kreiss, H.-O.; Wu, L., On the stability definition of difference approximations for the initial boundary value problem, Appl. Numer. Math., 12, 213-227, (1993) · Zbl 0782.65119
[8] Levy, D.; Tadmor, E., From semi-discrete to fully-discrete: stability of Runge-Kutta schemes by the energy method, SIAM Rev., 40, 40-73, (1998) · Zbl 0915.65093
[9] Nordström, J.; Lundquist, T., Summation-by-parts in time, J. Comput. Phys., 251, 487-499, (2013) · Zbl 1349.65399
[10] Svärd, M.; Mishra, S., Entropy stable schemes for initial-boundary-value conservation laws, Z. Angew. Math. Phys., 63, 985-1003, (2012) · Zbl 1263.65083
[11] Nordström, J.; Eriksson, S.; Eliasson, P., Weak and strong wall boundary procedures and convergence to steady-state of the Navier-Stokes equations, J. Comput. Phys., 231, 14, 4867-4884, (2012) · Zbl 1245.76020
[12] Nordström, J.; Eriksson, S., Fluid structure interaction problems: the necessity of a well posed, stable and accurate formulation, Commun. Comput. Phys., 8, 5, 1111-1138, (2010) · Zbl 1364.74037
[13] Nordström, J.; Forsberg, K.; Adamsson, C.; Eliasson, P., Finite volume methods, unstructured meshes and strict stability for hyperbolic problems, Appl. Numer. Math., 45, 4, 453-473, (June 2003)
[14] Abarbanel, S.; Chertock, A. E., Strict stability of high-order compact implicit finite-difference schemes: the role of boundary conditions for hyperbolic PDEs, I, J. Comput. Phys., 160, 42-66, (2000) · Zbl 0987.65087
[15] Abarbanel, S.; Chertock, A. E.; Yefet, A., Strict stability of high-order compact implicit finite-difference schemes: the role of boundary conditions for hyperbolic PDEs, II, J. Comput. Phys., 160, 67-87, (2000) · Zbl 0987.65088
[16] Nordström, J., The use of characteristic boundary conditions for the Navier-Stokes equations, Comput. Fluids, 24, 5, 609-623, (1995) · Zbl 0845.76075
[17] Nordström, J.; Carpenter, M. H., Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations, J. Comput. Phys., 148, (1999) · Zbl 0921.76111
[18] Carpenter, M. H.; Nordström, J.; Gottlieb, D., A stable and conservative interface treatment of arbitrary spatial accuracy, J. Comput. Phys., 148, (1999) · Zbl 0921.65059
[19] Svärd, M.; Nordström, J., A stable high-order finite difference scheme for the compressible Navier-Stokes equations, no-slip wall boundary conditions, J. Comput. Phys., 227, 4805-4824, (2008) · Zbl 1260.76021
[20] Gong, J.; Nordström, J., Interface procedures for finite difference approximations of the advection-diffusion equation, J. Comput. Phys., 236, 602-620, (2011) · Zbl 1231.65141
[21] Berg, J.; Nordström, J., Spectral analysis of the continuous and discretized heat and advection equation on single and multiple domains, Appl. Numer. Math., 62, 11, 1620-1638, (2012) · Zbl 1251.65120
[22] Eriksson, S.; Abbas, Q.; Nordström, J., A stable and conservative method for locally adapting the design order of finite difference schemes, J. Comput. Phys., 230, 11, 4216-4231, (2011) · Zbl 1220.65112
[23] Carpenter, M. H.; Nordström, J.; Gottlieb, D., Revisiting and extending interface penalties for multi-domain summation-by-parts operators, J. Sci. Comput., 45, 1-3, 118-150, (2010) · Zbl 1203.65176
[24] Nissen, A.; Kreiss, G.; Gerritsen, M., Stability at nonconforming grid interfaces for a high order discretization of the Schrödinger equation, J. Sci. Comput., 53, 3, 528-551, (2012) · Zbl 1272.65071
[25] Mattsson, K.; Carpenter, M. H., Stable and accurate interpolation operators for high-order multiblock finite difference methods, SIAM J. Sci. Comput., 32, 4, 2298-2320, (2010) · Zbl 1216.65107
[26] Nordström, J.; Gong, J.; van der Weide, E.; Svärd, M., A stable and conservative high order multi-block method for the compressible Navier-Stokes equations, J. Comput. Phys., 228, 9020-9035, (2009) · Zbl 1375.76036
[27] Fisher, T. C.; Carpenter, M. H.; Nordström, J.; Yamaleev, N. K.; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 1, 353-375, (2013) · Zbl 1284.65102
[28] Svärd, M.; Özcan, H., Entropy stable schemes for the Euler equations with far-field and wall boundary conditions, J. Sci. Comput., 58, 1, 61-89, (2014) · Zbl 1290.65084
[29] Mattsson, K.; Nordström, J., Summation by parts operators for finite difference approximations of second derivatives, J. Comput. Phys., 199, 2, (2004) · Zbl 1071.65025
[30] Mattsson, K., Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients, J. Sci. Comput., 1-33, (2011)
[31] Mattsson, K.; Svärd, M.; Shoeybi, M., Stable and accurate schemes for the compressible Navier-Stokes equations, J. Comput. Phys., 227, 2293-2316, (2008) · Zbl 1132.76039
[32] Abarbanel, S.; Ditkowski, A., Asymptotically stable fourth-order accurate schemes for the diffusion equation on complex shapes, J. Comput. Phys., 133, 279-288, (1997) · Zbl 0891.65099
[33] Abarbanel, S.; Ditkowski, A., Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation, Comput. Fluids, 29, 481-510, (1999) · Zbl 0970.76063
[34] Lax, P. D.; Richtmyer, R. D., Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., IX, (1956) · Zbl 0072.08903
[35] Gustafsson, B., The convergence rate for difference approximations to mixed initial boundary value problems, Math. Comput., 29, 130, 396-406, (Apr. 1975)
[36] Gustafsson, B., The convergence rate for difference approximations to general mixed initial boundary value problems, SIAM J. Numer. Anal., 18, 2, 179-190, (Apr. 1981)
[37] Abarbanel, S.; Ditkowski, A.; Gustafsson, B., On error bounds of finite difference approximations to partial differential equations-temporal behavior and rate of convergence, J. Sci. Comput., (2000) · Zbl 0984.65095
[38] Svärd, M.; Nordström, J., On the order of accuracy for difference approximations of initial-boundary value problems, J. Comput. Phys., 218, 1, 333-352, (October 2006)
[39] Svärd, M., A note on \(L^\infty\) bounds and convergence rates of summation-by-parts schemes, BIT Numer. Math., 1-8, (2014)
[40] Nordström, J.; Carpenter, M. H., High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates, J. Comput. Phys., 173, (2001) · Zbl 0987.65081
[41] Olsson, P., Summation by parts, projections, and stability I, Math. Comput., 64, 1035, (1995) · Zbl 0828.65111
[42] Olsson, P., Summation by parts, projections, and stability II, Math. Comput., 64, 1473, (1995) · Zbl 0848.65064
[43] Gerritsen, M.; Olsson, P., Designing an efficient solution strategy for fluid flows: 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations, J. Comput. Phys., 129, 2, 245-262, (Dec. 1996)
[44] Gerritsen, M.; Olsson, P., Designing an efficient solution strategy for fluid flows: II. stable high-order central finite difference schemes on composite adaptive grids with sharp shock resolution, J. Comput. Phys., 147, 2, 293-317, (Dec. 1998)
[45] Gustafsson, B., High order difference methods for time dependent PDE, (2008), Springer-Verlag Berlin, Heidelberg · Zbl 1146.65064
[46] Mattsson, K., Boundary procedures for summation-by-parts operators, J. Sci. Comput., 18, (2003) · Zbl 1024.76031
[47] Bodony, D. J., Accuracy of the simultaneous-approximation-term boundary condition for time-dependent problems, J. Sci. Comput., 43, 1, 118-133, (2010) · Zbl 1203.76043
[48] Berg, J.; Nordström, J., Stable Robin solid wall boundary conditions for the Navier-Stokes equations, J. Comput. Phys., 230, 19, 7519-7532, (2011) · Zbl 1280.76023
[49] Svärd, M.; Lundberg, J.; Nordström, J., A computational study of vortex-airfoil interaction using high-order finite difference methods, Comput. Fluids, 39, 1267-1274, (2010) · Zbl 1242.76214
[50] Du Bois, F.; Le Floch, P., Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differ. Equ., 71, 1, 93-122, (1988) · Zbl 0649.35057
[51] Svärd, M.; Carpenter, M. H.; Nordström, J., A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions, J. Comput. Phys., 225, 1020-1038, (2007) · Zbl 1118.76047
[52] Mishra, S.; Svärd, M., On stability of numerical schemes via frozen coefficients and the magnetic induction equations, BIT Numer. Math., 50, 85-108, (2010) · Zbl 1205.65248
[53] Nordström, J., Conservative finite difference formulation, variable coefficients, energy estimates and artificial dissipation, J. Sci. Comput., 29, 3, 375-404, (2006) · Zbl 1109.65076
[54] Nordström, J., Error bounded schemes for time-dependent hyperbolic problems, SIAM J. Sci. Comput., 30, 1, 46-59, (2007) · Zbl 1171.35308
[55] Kozdon, J. E.; Dunham, E. M.; Nordström, J., Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods, J. Sci. Comput., 55, 1, 92-124, (2013) · Zbl 1278.86009
[56] Kozdon, Jeremy E.; Dunham, Eric M.; Nordström, Jan, Interaction of waves with frictional interfaces using summation-by-parts difference operators: weak enforcement of nonlinear boundary conditions, J. Sci. Comput., 50, 2, 341-367, (2012) · Zbl 1325.74161
[57] Olsson, P.; Oliger, J., Energy and maximum norm estimates for nonlinear conservation laws, (Jan. 1994), The Research Institute of Advanced Computer Science, Technical report 94.01
[58] Svärd, M., On coordinate transformation for summation-by-parts operators, J. Sci. Comput., 20, 1, (2004) · Zbl 1057.65054
[59] Svärd, M.; Mattsson, K.; Nordström, J., Steady state computations using summation-by-parts operators, J. Sci. Comput., 24, 1, 79-95, (September 2005)
[60] Hicken, J. E.; Zingg, D. W., Superconvergent functional estimates from summation-by-parts finite-difference discretizations, SIAM J. Sci. Comput., 893-922, (2011) · Zbl 1227.65102
[61] Hicken, J. E., Output error estimation for summation-by-parts finite-difference schemes, J. Comput. Phys., 3828-3848, (2012) · Zbl 1242.65223
[62] Hicken, J. E.; Zingg, D. W., Summation-by-parts operators and high-order quadrature, J. Comput. Appl. Math., 111-125, (2013) · Zbl 1263.65025
[63] Berg, J.; Nordström, J., Superconvergent functional output for time-dependent problems using finite differences on summation-by-parts form, J. Comput. Phys., 231, 20, 6846-6860, (2012) · Zbl 1284.65098
[64] Hicken, J. E.; Zingg, D. W., Dual consistency and functional accuracy: A finite-difference perspective, J. Comput. Phys., 256, 161-182, (2014) · Zbl 1349.65559
[65] Berg, J.; Nordström, J., On the impact of boundary conditions on dual consistent finite difference discretizations, J. Comput. Phys., 236, 0, 41-55, (2013) · Zbl 1286.65107
[66] Berg, J.; Nordström, J., Duality based boundary conditions and dual consistent finite difference discretizations of the Navier-Stokes and Euler equations, J. Comput. Phys., 259, 135-153, (2014) · Zbl 1349.76431
[67] Lundquist, T.; Nordström, J., The SBP-SAT technique for time-discretization, (21st AIAA Computational Fluid Dynamics Conference, (2013)), AIAA paper 2013-2834
[68] Nordström, J.; Björck, M., Finite volume approximations and strict stability for hyperbolic problems, Appl. Numer. Math., 38, 3, 237-255, (2001) · Zbl 0985.65103
[69] Svärd, M.; Nordström, J., Stability of finite volume approximations for the Laplacian operator on quadrilateral and triangular grids, Appl. Numer. Math., 51, 1, 101-125, (October 2004)
[70] Svärd, M.; Gong, J.; Nordström, J., Stable artificial dissipation operators for finite volume schemes on unstructured grids, Appl. Numer. Math., 56, 12, 1481-1490, (Dec. 2006)
[71] Shoeybi, M.; Svärd, M.; Ham, F.; Moin, P., An adaptive implicit-explicit scheme for the DNS and LES of compressible flows on unstructured grids, J. Comput. Phys., 229, 5944-5965, (2010) · Zbl 1425.76108
[72] Nordström, J.; Gong, J., A stable hybrid method for hyperbolic problems, J. Comput. Phys., 212, 436-453, (2006) · Zbl 1083.65085
[73] Gong, J.; Nordström, J., A stable and efficient hybrid scheme for viscous problems in complex geometries, J. Comput. Phys., 226, 2, 1291-1309, (2007) · Zbl 1121.76041
[74] Nordström, J.; Ham, F.; Shoeybi, M.; van der Weide, E.; Svärd, M.; Mattsson, K.; Iaccarino, G.; Gong, J., A hybrid method for unsteady inviscid fluid flow, Comput. Fluids, 38, 875-882, (2009) · Zbl 1242.76181
[75] Gassner, G., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253, (2013) · Zbl 1275.65065
[76] Williams, D. M.; Castonguay, P.; Vincent, P. E.; Jameson, A., Energy stable flux reconstruction schemes for advection-diffusion problems on triangles, J. Comput. Phys., 250, 53-76, (2013) · Zbl 1349.65528
[77] Abarbanel, S.; Gottlieb, D., Optimal time splitting for two- and three-dimensional Navier-Stokes equations with mixed derivatives, J. Comput. Phys., 41, 1-33, (1981) · Zbl 0467.76062
[78] Pulliam, T. H.; Chaussee, D. S., A diagonal form of an implicit approximate-factorization algorithm, J. Comput. Phys., 39, 347-363, (1981) · Zbl 0472.76068
[79] Mattsson, K.; Svärd, M.; Nordström, J., Stable and accurate artificial dissipation, J. Sci. Comput., 21, 1, 57-79, (August 2004)
[80] Diener, P.; Dorband, E. N.; Schnetter, E.; Tiglio, M., Optimized high-order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions, J. Sci. Comput., 32, 1, 109-145, (2007) · Zbl 1120.65092
[81] Kennedy, C. A.; Carpenter, M. H.; Lewis, R. M., Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35, (2000) · Zbl 0986.76060
[82] Kennedy, C. A.; Carpenter, M. H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181, (2003) · Zbl 1013.65103
[83] Bijl, H.; Carpenter, M. H.; Vatsa, V. N.; Kennedy, C. A., Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow, J. Comput. Phys., 179, 1, 313-329, (2002) · Zbl 1060.76079
[84] Carpenter, M. H.; Kennedy, C. A.; Bijl, H.; Viken, S. A.; Vatsa, V. N., Fourth-order Runge-Kutta schemes for fluid mechanics applications, J. Sci. Comput., 25, 157-194, (2005) · Zbl 1203.76112
[85] van der Weide, E.; Svärd, M., Test cases c1.1, c1.2, c1.3, (1st International Workshop on High-Order CFD Methods, January 7-8, 2012, Nashville, Tennessee, USA, (2012))
[86] Fike, J. A.; Jongsma, S.; Alonso, J. J.; Weide, E.v.d., Optimization with gradient and Hessian information calculated using hyper-dual numbers, (AIAA paper 2011-3807, (2011))
[87] Mattsson, K.; Svärd, M.; Carpenter, M. H.; Nordström, J., High-order accurate computations for unsteady aerodynamics, Comput. Fluids, 36, 3, 636-649, (2007) · Zbl 1177.76261
[88] Bodony, D. J., Scattering of an entropy disturbance into sound by a symmetric thin body, Phys. Fluids, 21, (2009) · Zbl 1183.76098
[89] Svärd, M.; Mishra, S., Implicit-explicit schemes for flow equations with stiff source terms, J. Comput. Appl. Math., 235, 1564-1577, (2011) · Zbl 1270.76048
[90] Nordström, J.; Mattsson, K.; Swanson, C., Boundary conditions for a divergence free velocity-pressure formulation of the Navier-Stokes equations, J. Comput. Phys., 225, 1, 874-890, (2007) · Zbl 1118.76046
[91] Ham, F.; Mattsson, K.; Iaccarino, G.; Moin, P., Towards time-stable and accurate LES on unstructured grids, (Kassinos, Stavros C.; Langer, Carlos A.; Iaccarino, Gianluca; Moin, Parviz, Complex Effects in Large Eddy Simulations, Lect. Notes Comput. Sci. Eng., vol. 56, (2007), Springer Berlin, Heidelberg), 235-249 · Zbl 1303.76036
[92] Müller, B., High order numerical simulation of Aeolian tones, Comput. Fluids, 37, 4, 450-461, (2008) · Zbl 1237.76106
[93] Müller, B.; Yee, H., Entropy splitting for high order numerical simulation of vortex sound at low Mach numbers, J. Sci. Comput., 17, 181-190, (2002) · Zbl 1053.76050
[94] Müller, B.; Yee, H., Numerical simulation of confined pulsating jets in human phonation, Comput. Fluids, 38, 7, 1375-1383, (2009) · Zbl 1242.76374
[95] Lindström, J.; Nordström, J., A stable and high-order accurate conjugate heat transfer problem, J. Comput. Phys., 229, 14, 5440-5456, (2010) · Zbl 1346.80004
[96] Nordström, J.; Berg, J., Conjugate heat transfer for the unsteady compressible Navier-Stokes equations using a multi-block coupling, Comput. Fluids, 72, 20-29, (2013) · Zbl 1365.76276
[97] Mattsson, K.; Nordström, J., High order finite difference methods for wave propagation in discontinuous media, J. Comput. Phys., 220, 249-269, (2006) · Zbl 1158.65333
[98] Mattsson, K.; Ham, F.; Iaccarino, G., Stable and accurate wave-propagation in discontinuous media, J. Comput. Phys., 227, 249-269, (2008)
[99] Mattsson, K.; Ham, F.; Iaccarino, G., Stable boundary treatment for the wave equation on second-order form, J. Sci. Comput., 41, 3, 366-383, (2009) · Zbl 1203.65145
[100] Mattsson, K.; Parisi, F., Stable and accurate second-order formulation of the shifted wave equation, Commun. Comput. Phys., 7, 101-137, (2010) · Zbl 1364.65167
[101] Schnetter, E.; Diener, P.; Dorband, E. N.; Tiglio, M., A multi-block infrastructure for three-dimensional time-dependent numerical relativity, Class. Quantum Gravity, 23, S553-S578, (2006) · Zbl 1191.83006
[102] Dorband, E. N.; Berti, E.; Diener, P.; Schnetter, E.; Tiglio, M., A numerical study of the quasinormal mode excitation of Kerr black holes, Phys. Rev. D, 75, (2006)
[103] Zink, B.; Schnetter, E.; Tiglio, M., Multi-patch methods in general relativistic astrophysics - I. hydrodynamical flows on fixed backgrounds, Phys. Rev. D, (2008)
[104] Nordström, J.; Gustafsson, R., High order finite difference approximations of electromagnetic wave propagation close to material discontinuities, J. Sci. Comput., 18, 2, 215-234, (2003) · Zbl 1029.78012
[105] Koley, U.; Mishra, S.; Risebro, N. H.; Svärd, M., Higher order finite difference schemes for the magnetic induction equations, BIT Numer. Math., 49, 375-395, (2009) · Zbl 1168.78317
[106] Koley, U.; Mishra, S.; Risebro, N. H.; Svärd, M., Higher order finite difference schemes for the resistive magnetic induction equations, IMA J. Numer. Anal., 32, 1173-1193, (2012) · Zbl 1252.78033
[107] Amsallem, D.; Nordström, J., High-order accurate difference schemes for the Hodgkin-Huxley equations, J. Comput. Phys., 252, 573-590, (2013) · Zbl 1349.92037
[108] Pettersson, P.; Iaccarino, G.; Nordström, J., Numerical analysis of the Burgers’ equation in the presence of uncertainty, J. Comput. Phys., 228, 22, 8394-8412, (2009) · Zbl 1177.65017
[109] Pettersson, P.; Nordström, J.; Iaccarino, G., Boundary procedures for the time-dependent Burgers’ equation under uncertainty, Acta Math. Sci., 30, 2, 539-550, (2010) · Zbl 1240.35591
[110] Pettersson, P.; Doostan, A.; Nordström, J., On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity, Comput. Methods Appl. Mech. Eng., 258, 134-151, (2013) · Zbl 1286.65138
[111] Pettersson, P.; Iaccarino, G.; Nordström, J., An intrusive hybrid method for discontinuous two-phase flow under uncertainty, Comput. Fluids, 86, 228-239, (2013) · Zbl 1290.76158
[112] Pettersson, P.; Iaccarino, G.; Nordström, J., A stochastic Galerkin method for the Euler equations with roe variable transformation, J. Comput. Phys., 257, 481-500, (2014) · Zbl 1349.76251
[113] Strang, G., Accurate partial difference methods II. non-linear problems, Numer. Math., 6, 37-46, (1964) · Zbl 0143.38204
[114] Kreiss, H.-O.; Lorenz, J., Initial boundary value problems and the Navier-Stokes equations, (1989), Academic Press New York
[115] Michelson, D., Stability theory of difference approximations for multidimensional initial-boundary value problems, Math. Comput., 40, 1-45, (1983) · Zbl 0563.65064
[116] Michelson, D., Convergence theorem for difference approximations of hyperbolic quasi-linear initial-boundary value problems, Math. Comput., 49, 445-459, (1987) · Zbl 0632.65106
[117] Wade, B. A., Symmetrizable finite difference operators, Math. Comput., 54, 525-543, (Apr. 1990)
[118] Strikwerda, J. C.; Wade, B. A., An extension of the kreiss matrix theorem, SIAM J. Numer. Anal., 25, 6, 1272-1278, (1988) · Zbl 0667.65074
[119] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[120] Wang, R.; Spiteri, R. J., Linear instability of the fifth-order WENO method, SIAM J. Numer. Anal., 45, 5, 1871-1901, (2007) · Zbl 1158.65065
[121] Motamed, M.; Macdonald, C. B.; Ruuth, S. J., On the linear stability of the fifth-order WENO discretization, J. Sci. Comput., 47, 2, 127-149, (2011) · Zbl 1217.65180
[122] Yamaleev, N. K.; Carpenter, M. H., Third-order energy stable WENO scheme, J. Comput. Phys., 228, 8, 3025-3047, (2009) · Zbl 1165.65381
[123] Fisher, T. C.; Carpenter, M. H.; Yamaleev, N. K.; Frankel, S. H., Boundary closures for fourth-order energy stable weighted essentially non-oscillatory finite-difference schemes, J. Comput. Phys., 230, 3727-3752, (2011) · Zbl 1216.65104
[124] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 451-512, (2003) · Zbl 1046.65078
[125] Svärd, M., Third-order accurate entropy-stable scheme for initial-boundary-value conservation laws, Z. Angew. Math. Phys., 63, 599-623, (2012) · Zbl 1298.65128
[126] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557, (2013) · Zbl 1349.65293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.