×

zbMATH — the first resource for mathematics

Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. (English) Zbl 1349.65446
Summary: Solving wave propagation problems within heterogeneous media has been of great interest and has a wide range of applications in physics and engineering. The design of numerical methods for such general wave propagation problems is challenging because the energy conserving property has to be incorporated in the numerical algorithms in order to minimize the phase or shape errors after long time integration. In this paper, we focus on multi-dimensional wave problems and consider linear second-order wave equation in heterogeneous media. We develop and analyze an LDG method, in which numerical fluxes are carefully designed to maintain the energy conserving property and accuracy.compatible high order energy conserving time integrators are also proposed. The optimal error estimates and the energy conserving property are proved for the semi-discrete methods. Our numerical experiments demonstrate optimal rates of convergence, and show that the errors of the numerical solutions do not grow significantly in time due to the energy conserving property.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adjerid, S.; Temimi, H., A discontinuous Galerkin method for the wave equation, Comput. Methods Appl. Mech. Eng., 200, 837-849, (2011) · Zbl 1225.76187
[2] Anderson, M.; Kimn, J.-H., A numerical approach to space-time finite elements for the wave equation, J. Comput. Phys., 226, 466-476, (2007) · Zbl 1124.65087
[3] Appelö, D.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., Numerical methods for solid mechanics on overlapping grids: linear elasticity, J. Comput. Phys., 231, 6012-6050, (2012) · Zbl 1277.74005
[4] Appelö, D.; Petersson, N. A., A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, Commun. Comput. Phys., 5, 84-107, (2009) · Zbl 1364.74016
[5] Baccouch, M., A local discontinuous Galerkin method for the second-order wave equation, Comput. Methods Appl. Mech. Eng., 209, 212, 129-143, (2012) · Zbl 1243.65119
[6] Banks, J. W.; Henshaw, W. D., Upwind schemes for the wave equation in second-order form, J. Comput. Phys., 231, 5854-5889, (2012) · Zbl 1277.76058
[7] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279, (1997) · Zbl 0871.76040
[8] Brown, D. L., A note on the numerical solution of the wave equation with piecewise smooth coefficients, Math. Comput., 42, 369-391, (1984) · Zbl 0558.65072
[9] Casadei, F.; Gabellini, E.; Fotia, G.; Maggio, F.; Quarteroni, A., A mortar spectral/finite element method for complex 2d and 3d elastodynamic problems, Comput. Methods Appl. Mech. Eng., 191, 5119-5148, (2002)
[10] Cheng, Y.; Shu, C.-W., Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection diffusion equations in one space dimension, SIAM J. Numer. Anal., 47, 4044-4072, (2010) · Zbl 1208.65137
[11] Chung, E. T.; Engquist, B., Optimal discontinuous Galerkin methods for wave propagation, SIAM J. Numer. Anal., 44, 2131-2158, (2006) · Zbl 1158.65337
[12] Chung, E. T.; Engquist, B., Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions, SIAM J. Numer. Anal., 47, 3820-3848, (2009) · Zbl 1279.65117
[13] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581, (1990) · Zbl 0695.65066
[14] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113, (1989) · Zbl 0677.65093
[15] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435, (1989) · Zbl 0662.65083
[16] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463, (1998) · Zbl 0927.65118
[17] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224, (1998) · Zbl 0920.65059
[18] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 173-261, (2001) · Zbl 1065.76135
[19] Cohen, G., Higher-order numerical methods for transient wave equations, (2002), Springer-Verlag Berlin · Zbl 0985.65096
[20] Cohen, G.; Joly, P.; Roberts, J.; Tordjman, N., Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal., 38, 2047-2078, (2001) · Zbl 1019.65077
[21] Diaz, J.; Grote, M. J., Energy conserving explicit local time stepping for second-order wave equations, SIAM J. Sci. Comput., 31, 1985-2014, (2009) · Zbl 1195.65131
[22] Dong, B.; Shu, C.-W., Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems, SIAM J. Numer. Anal., 47, 3240-3268, (2009) · Zbl 1204.65123
[23] Durran, D. R., Numerical methods for wave equations in geophysical fluid dynamics, (1999), Springer
[24] Faccioli, E.; Maggio, F.; Quarteroni, A.; Tagliani, A., Spectral-domain decomposition for the solution of acoustic and elastic wave equations, Geophysics, 61, 1160-1174, (1996)
[25] Falk, R. S.; Richter, G. R., Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal., 36, 935-952, (1999) · Zbl 0923.65065
[26] Fezoui, L.; Lanteri, S.; Lohrengel, S.; Piperno, S., Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, Math. Model. Numer. Anal., 39, 1149-1176, (2005) · Zbl 1094.78008
[27] French, D. A.; Peterson, T. E., A continuous space-time finite element method for the wave equation, Math. Comput., 65, 491-506, (1996) · Zbl 0846.65048
[28] Gottlieb, D.; Hesthaven, J. S., Spectral methods for hyperbolic problems, J. Comput. Appl. Math., 128, 83-131, (2001) · Zbl 0974.65093
[29] Grote, M. J.; Schneebeli, A.; Schötzau, D., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44, 2408-2431, (2006) · Zbl 1129.65065
[30] Hesthaven, J. S.; Warburton, T., Nodal high-order methods on unstructured grids. I. time-domain solution of Maxwell’s equations, J. Comput. Phys., 181, 186-221, (2002) · Zbl 1014.78016
[31] Hufford, C.; Xing, Y., Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation, J. Comput. Appl. Math., 255, 441-455, (2014) · Zbl 1291.65301
[32] Kampanis, N. A.; Ekaterinaris, J.; Dougalis, V., Effective computational methods for wave propagation, (2008), Chapman & Hall/CRC · Zbl 1134.65002
[33] Kane, C.; Marsden, J. E.; Ortiz, M.; West, M., Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems, Int. J. Numer. Methods Eng., 49, 1295-1325, (2000) · Zbl 0969.70004
[34] Kreiss, H.-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 199-215, (1972)
[35] Maggio, F.; Quarteroni, A., Acoustic wave propagation by spectral methods, East-West J. Numer. Math., 2, 129-150, (1994) · Zbl 0838.76067
[36] Meng, X.; Shu, C.-W.; Wu, B., Superconvergence of the local discontinuous Galerkin method for linear fourth order time dependent problems in one space dimension, IMA J. Numer. Anal., 32, 1294-1328, (2012) · Zbl 1258.65083
[37] Monk, P.; Richter, G. R., A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Comput., 22, 23, 443-477, (2005) · Zbl 1082.65099
[38] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech. Div., 85, 67-94, (1959)
[39] Riviere, B.; Wheeler, M. F., Discontinuous finite element methods for acoustic and elastic wave problems, Contemp. Math., 329, 271-282, (2003) · Zbl 1080.76039
[40] Safjan, A.; Oden, J. T., High-order Taylor-Galerkin and adaptive hp methods for second-order hyperbolic systems: application to elastodynamics, Comput. Methods Appl. Mech. Eng., 103, 187-230, (1993) · Zbl 0767.73077
[41] Shubin, G. R.; Bell, J. B., A modified equation approach to constructing fourth order methods for acoustic wave propagation, SIAM J. Sci. Stat. Comput., 8, 135-151, (1987) · Zbl 0611.76091
[42] Sjögreen, B.; Petersson, N. Anders, A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation, J. Sci. Comput., 52, 17-48, (2011) · Zbl 1255.65162
[43] Xing, Y.; Chou, C.-S.; Shu, C.-W., Energy conserving local discontinuous Galerkin methods for wave propagation problems, Inverse Probl. Imaging, 7, 967-986, (2013) · Zbl 1273.65181
[44] Xu, Y.; Shu, C.-W., Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations, SIAM J. Numer. Anal., 50, 79-104, (2012) · Zbl 1247.65121
[45] Zampieri, E.; Pavarino, L. F., An explicit second order spectral element method for acoustic waves, Adv. Comput. Math., 25, 381-401, (2006) · Zbl 1118.65106
[46] Zhong, X.; Shu, C.-W., Numerical resolution of discontinuous Galerkin methods for time dependent wave equations, Comput. Methods Appl. Mech. Eng., 200, 2814-2827, (2011) · Zbl 1230.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.