zbMATH — the first resource for mathematics

Generalized multiscale finite element methods (GMsFEM). (English) Zbl 1349.65617
Summary: In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition.compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI arXiv
[1] Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, SIAM J. Multiscale Model. Simulat., 2, 421-439, (2004) · Zbl 1181.76125
[2] Aarnes, J. E.; Efendiev, Y., Mixed multiscale finite element for stochastic porous media flows, SIAM Sci. Comput., 30, 5, 2319-2339, (2008) · Zbl 1171.76022
[3] J.E. Aarnes, Y. Efendiev, L. Jiang, Analysis of multiscale finite element methods using global information for two-phase flow simulations, SIAM MMS, 2008.
[4] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform grids, Multiscale Model. Simul., 5, 2, 337-363, (2006) · Zbl 1124.76022
[5] Allaire, G.; Brizzi, R., A multiscale finite element method for numerical homogenization, SIAM J. Multiscale Model. Simulat., 4, 3, 790-812, (2005) · Zbl 1093.35007
[6] Antoulas, A. C., Approximation of large-scale dynamical systems, (2005), SIAM Press Philadelphia · Zbl 1112.93002
[7] Arbogast, T., Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow, Comput. Geosci., 6, 453-481, (2002) · Zbl 1094.76532
[8] Arbogast, T.; Pencheva, G.; Wheeler, M. F.; Yotov, I., A multiscale mortar mixed finite element method, SIAM J. Multiscale Model. Simul., 6, 1, 319-346, (2007) · Zbl 1322.76039
[9] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), pp. 1749-1779 (electronic). · Zbl 1008.65080
[10] Babuska, I.; Lipton, R., Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., SIAM, 9, 373-406, (2011) · Zbl 1229.65195
[11] Babuška, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Eng., 40, 727-758, (1997) · Zbl 0949.65117
[12] Babuška, I.; Osborn, E., Generalized finite element methods: their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20, 510-536, (1983) · Zbl 0528.65046
[13] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C.R. Acad. Sci. Paris Series, I, 339, 667-672, (2004) · Zbl 1061.65118
[14] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic analysis for periodic structure, (1978), North-Holland Amsterdam · Zbl 0411.60078
[15] Boyoval, S., Reduced-basis approach for homogenization beyond periodic setting, SIAM MMS, 7, 1, 466-494, (2008) · Zbl 1156.74358
[16] Boyaval, S.; LeBris, C.; Lelièvre, T.; Maday, Y.; Nguyen, N.; Patera, A., Reduced basis techniques for stochastic problems, Arch. Comput. Methods Eng., 17, 435-454, (2010) · Zbl 1269.65005
[17] Chen, C. T., Linear system theory and design, (1984), Holt Rinehart and Winston
[18] Y. Chen, L. Durlofsky, An ensemble level upscaling approach for efficient estimation of fine-scale production statistics using coarse-scale simulations, SPE paper 106086, presented at the SPE Reservoir Simulation Symposium, Houston, Feb. 26-28, 2007.
[19] Chen, Y.; Durlofsky, L. J.; Gerritsen, M.; Wen, X. H., A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations, Adv. Water Resour., 26, 1041-1060, (2003)
[20] Chen, Z.; Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 541-576, (2002) · Zbl 1017.65088
[21] M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients, Comput. Methods Appl. Math. 3 (2003) 76-85 (electronic). · Zbl 1039.65079
[22] Durlofsky, L. J., Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27, 699-708, (1991)
[23] Y. Efendiev, J. Galvis, A domain decomposition preconditioner for multiscale high-contrast problems, in: Y. Huang, R. Kornhuber, O. Widlund, J. Xu (Eds.), Domain Decomposition Methods in Science and Engineering XIX, Vol. 78 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2011, Part 2, pp. 189-196. · Zbl 1217.65221
[24] Y. Efendiev, J. Galvis. Coarse-grid multiscale model reduction techniques for flows in heterogeneous media and applications, Chapter of Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and, Engineering, vol. 83, pp. 97-125. · Zbl 1245.76152
[25] Y. Efendiev, J. Galvis, P. Vassielvski, Spectral element agglomerate algebraic multigrid methods for elliptic problems with high-Contrast coefficients, in: Y. Huang, R. Kornhuber, O. Widlund, J. Xu (Eds.), Domain Decomposition Methods in Science and Engineering XIX, Vol. 78 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2011, Part 3, pp. 407-414. · Zbl 1217.65222
[26] Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 46, September 2012, pp. 1175-1199. · Zbl 1272.65098
[27] Efendiev, Y.; Galvis, J.; Lazarov, R.; Margenov, S.; Ren, J., Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media, Comput. Methods Appl. Math., 12, 4, 415-436, (2012) · Zbl 1284.65153
[28] Y. Efendiev, J. Galvis, R. Lazarov, M. Moon, M. Sarkis, Generalized multiscale finite element method, Symmetric Interior Penalty Coupling, submitted. · Zbl 1349.76199
[29] Efendiev, Y.; Galvis, J.; Thomines, F., A systematic coarse-scale model reduction technique for parameter-dependent flows in highly heterogeneous media and its applications, SIAM MMS, 10, 4, 1317-1343, (2012) · Zbl 1264.76088
[30] Y. Efendiev, J. Galvis, X.H. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions, J. Comput. Phys. 230 (4) (2011) 937-955. · Zbl 1391.76321
[31] Y. Efendiev, J. Galvis, G. Li, M. Presho, Generalized Multiscale Finite Element Methods. Oversampling Strategies, Int. J. Multiscale Comput. Eng., accepted for publication. · Zbl 1388.65146
[32] Efendiev, Y.; Ginting, V.; Hou, T.; Ewing, R., Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys., 220, 1, 155-174, (2006) · Zbl 1158.76349
[33] Efendiev, Y.; Hou, T., Multiscale finite element methods, theory and applications, (2009), Springer · Zbl 1163.65080
[34] Efendiev, Y.; Hou, T. Y.; Wu, X. H., Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37, 888-910, (2000) · Zbl 0951.65105
[35] Galvis, J.; Efendiev, Y., Domain decomposition preconditioners for multiscale flows in high contrast media, SIAM J. Multiscale Model. Simul., 8, 4, 1461-1483, (2010) · Zbl 1206.76042
[36] Galvis, J.; Efendiev, Y., Domain decomposition preconditioners for multiscale flows in high-contrast media: reduced dimension coarse spaces, SIAM J. Multiscale Model. Simul., 8, 5, 1621-1644, (2010) · Zbl 1381.65029
[37] Hespanha, J. P., Linear systems theory, (2009), Princeton University Press · Zbl 1185.93001
[38] Hou, T. Y.; Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189, (1997) · Zbl 0880.73065
[39] Hughes, T.; Feijoo, G.; Mazzei, L.; Quincy, J., The variational multiscale method - a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 3-24, (1998) · Zbl 1017.65525
[40] Jenny, P.; Lee, S. H.; Tchelepi, H., Multi-scale finite volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67, (2003) · Zbl 1047.76538
[41] S. Krogstad, A sparse basis POD for model reduction of multiphase compressible flow, SPE 141973. This paper was prepared for presentation at the 2011 SPE Reservoir Simulation Symposium held in The Woodlands, Texas, USA, February 2011.
[42] Lunati, I.; Jenny, P., Multi-scale finite-volume method for compressible multi-phase flow in porous media, J. Comput. Phys., 216, 616-636, (2006) · Zbl 1220.76049
[43] Mathew, T. P.A., Domain decomposition methods for the numerical solution of partial differential equations, volume 61 of lecture notes in computational science and engineering, (2008), Springer-Verlag Berlin
[44] Nguyen, N. C., A multiscale reduced-basis method for parameterized elliptic partial differential equations with multiple scales, J. Comput. Phys., 227, 23, 9807-9822, (2008) · Zbl 1155.65391
[45] H. Owhadi, L. Zhang, Metric based up-scaling, Commun. Pure Appl. Math. LX (2007) 675-723. · Zbl 1190.35070
[46] Owhadi, H.; Zhang, L., Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast, SIAM J. Multiscale Model. Simul., 9, 4, 1373-1398, (2011) · Zbl 1244.65140
[47] Rivière, Béatrice, Discontinuous Galerkin methods for solving elliptic and parabolic equation, vol. 35 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2008. · Zbl 1153.65112
[48] G. Rozza, D.B.P Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Application to transport and continuum mechanics, Arch. Comput. Methods Eng. 15 (3) (2008) 229-275. · Zbl 1304.65251
[49] Toselli, A.; Widlund, O., Domain decomposition methods—algorithms and theory, volume 34 of Springer series in computational mathematics, (2005), Springer-Verlag Berlin
[50] S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control in reduction of large-scale systems, in: P. Benner, V. Mehrmann, D.C. Sorensen (Eds.), Lecture Notes in Computational Science and Engineering, vol. 45, 2005, pp. 261-306. · Zbl 1079.65533
[51] Wu, X. H.; Efendiev, Y.; Hou, T. Y., Analysis of upscaling absolute permeability, Discr. Contin. Dyn. Syst., Ser. B, 2, 185-204, (2002) · Zbl 1162.65327
[52] Xu, J.; Zikatanov, L., On an energy minimizing basis for algebraic multigrid methods, Comput. Visual Sci., 7, 121-127, (2004) · Zbl 1077.65130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.