×

zbMATH — the first resource for mathematics

Axial compression-induced wrinkles on a core-shell soft cylinder: theoretical analysis, simulations and experiments. (English) Zbl 1349.74255
Summary: Surface wrinkling of a cylindrical shell supported by a soft core subjected to axial compression is investigated via combined experimental, computational and theoretical efforts. Our experiments show that the post-bifurcation deformation mode of the system is axisymmetric when the modulus ratio of the surface layer to the core is small while a non-axisymmetric wrinkling pattern appears when the modulus ratio is large. Our nonlinear finite element simulations have confirmed this experimental finding. A theoretical analysis based on Koiter’s elastic stability theory is carried out to reveal the mechanisms underpinning the phenomenon of morphological evolution. The critical buckling analysis shows that the first bifurcation mode is axisymmetric for arbitrary modulus ratios of the shell to the core. Post-bifurcation analysis reveals that the system will evolve into a diamond-like mode when the modulus ratio is large enough but keep the axisymmetric mode if the modulus ratio is smaller than a critical value. The results can guide the creation of controlled surface wrinkles on a cylindrical surface under compression. Besides, the analysis approach presented here may be adopted to understand the wrinkling patterns observed in some natural systems generated by, for instance, differential growth.

MSC:
74K25 Shells
74G60 Bifurcation and buckling
74B99 Elastic materials
Software:
ABAQUS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ABAQUS analysis user׳s manual, version 6.10, 2010.
[2] Allen, H. G., Analysis and design of structural sandwich panels, (1969), Pergamon Press New York
[3] Arani, A. G.; Golabi, S.; Loghman, A.; Daneshi, H., Investigating elastic stability of cylindrical shell with an elastic core under axial compression by energy method, J. Mech. Sci. Technol., 21, 983-996, (2007)
[4] Audoly, B.; Boudaoud, A., Buckling of a stiff film bound to a compliant substrate: part I, part II & part III, J. Mech. Phys. Solids, 56, 2401-2458, (2008) · Zbl 1171.74351
[5] Ben Amar, M.; Goriely, A., Growth and instabilities in elastic tissues, J. Mech. Phys. Solids, 53, 2284-2319, (2005) · Zbl 1120.74336
[6] Biot, M. A., Bending of an infinite beam on an elastic foundation, J. Appl. Mech., 203, A1-A7, (1937)
[7] Boussinesq, J., Application des potentiels a L’etude de l’equilibre et due mouvement des solides elastique, (1885), Gauthier Villars Paris · JFM 17.0952.01
[8] Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature, 393, 146-149, (1998)
[9] Brau, F.; Vandeparre, H.; Sabbah, A.; Poulard, C.; Boudaoud, A.; Damman, P., Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators, Nat. Phys., 7, 56-60, (2011)
[10] Breid, D.; Crosby, A. J., Curvature-controlled wrinkle morphologies, Soft Matter, 9, 3624-3630, (2013)
[11] Cai, S.; Breid, D.; Crosby, A. J.; Suo, Z.; Hutchinson, J. W., Periodic patterns and energy states of buckled films on compliant substrates, J. Mech. Phys. Solids, 59, 1094-1114, (2011) · Zbl 1270.74126
[12] Cao, Y. P.; Hutchinson, J. W., Wrinkling phenomena in neo-Hookean film/substrate systems, J. Appl. Mech., 79, 3, 031019, (2012)
[13] Cao, Y. P.; Hutchinson, J. W., From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling, Proc. R. Soc. A, 468, 94-115, (2012) · Zbl 1243.74040
[14] Chen, X.; Hutchinson, J. W., Herringbone buckling patterns of compressed thin films on compliant substrates, J. Appl. Mech., 71, 597-603, (2004) · Zbl 1111.74362
[15] Chen, X.; Yin, J., Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication, Soft Matter, 6, 5667-5680, (2010)
[16] Ebata, Y.; Croll, A. B.; Crosby, A. J., Wrinkling and strain localizations in polymer thin films, Soft Matter, 8, 9086-9091, (2012)
[17] Goriely, A.; Ben Amar, M., Differential growth and instabilities in elastic shells, Phys. Rev. Lett., 94, 1918103, (2005)
[18] Groenewold, J., Wrinkling of plates coupled with soft elastic media, Physica A, 298, 32-45, (2001)
[19] Horton, W. H.; Durham, S. C., Imperfections, a main contributor to scatter in experimental values of buckling load, Int. J. Solids Struct., 1, 59-72, (1965)
[20] Huang, R., Kinetic wrinkling of an elastic film on a viscoelastic substrate, J. Mech. Phys. Solids, 53, 1, 63-89, (2005) · Zbl 1134.74387
[21] Huang, Z. Y.; Hong, W.; Suo, Z., Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J. Mech. Phys. Solids, 53, 9, 2101-2118, (2005) · Zbl 1176.74116
[22] Hutchinson, J. W., Imperfection sensitivity of externally pressurized spherical shells, J. Appl. Mech., 34, 49-55, (1967) · Zbl 0159.27006
[23] Hutchinson, J. W., Knockdown factors for buckling of cylindrical and spherical shells suject to reduced baixial membrane stress, Int. J. Solids Struct., 47, 1443-1448, (2010) · Zbl 1193.74045
[24] Jiang, H. Q.; Khang, D. Y.; Fei, H. Y.; Kim, H.; Huang, Y. G.; Xiao, J. L.; Rogers, J., Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies, J. Mech. Phys. Solids, 56, 2585-2598, (2008) · Zbl 1171.74353
[25] Karam, G. N.; Gibson, L. J., Elastic buckling of cylindrical shells with elastic cores—I. analysis, Int. J. Solids Struct., 32, 1259-1283, (1995) · Zbl 0872.73016
[26] Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A., A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science, 311, 208-212, (2006)
[27] Kim, P.; Abkarian, M.; Stone, H. A., Hierarchical folding of elastic membranes under biaxial compressive stress, Nat. Mater., 10, 952-957, (2011)
[28] Koiter, W.T., 1945. On the stability of elastic equilibrium (in Dutch with English summary). Thesis Delft, H.J. Paris, Amsterdam. An English translation is available online: 〈http://imechanica.org/node/1400〉.
[29] Koiter, W. T., The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression, Kon. Neder. Acad. Wet. B, 66, 265-279, (1963) · Zbl 0117.19103
[30] Koiter, W. T., Elastic stability of solids and structures, (van der Heijden, A. M.A., (2009), Cambridge University Press Cambridge) · Zbl 1163.74001
[31] Lacour, S. P.; Jones, J.; Wagner, S.; Li, T.; Suo, Z., Stretchable interconnects for elastic electronic surfaces, Proc. IEEE, 93, 1459-1467, (2005)
[32] Li, B.; Jia, F.; Cao, Y. P.; Feng, X. Q.; Gao, H. J., Surface wrinkling patterns on a core-shell soft sphere, Phys. Rev. Lett., 106, 234301, (2011)
[33] Li, B.; Cao, Y. P.; Feng, X. Q.; Gao, H. J., Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment, J. Mech. Phys. Solids, 59, 758-774, (2011)
[34] Li, B.; Cao, Y. P.; Feng, X. Q.; Gao, H. J., Mechanics of morphological instabilities and surface wrinkling in soft materials: a review, Soft Matter, 8, 5728-5745, (2012)
[35] Menzel, A.; Kuhl, E., Frontiers in growth and remodeling, Mech. Res. Commun., 42, 1-14, (2012)
[36] Myint-U, T., Post buckling behavior of axially compressed core-filled cylinders, Z. angew. Math. Mech., 49, 423-426, (1969)
[37] Novozhilov, V. V., The theory of thin shells, (1959), Noordhoff Ltd. the Netherlands · Zbl 0085.18803
[38] O’Neal, A. P., Preliminary results of compression test-sustainer motor case, DM-15. memorandum A260-STRE-214, Missiles and Space Systems Engineering, (1959), Douglas Aircraft Company Santa Monico, CA
[39] Papastavrou, A.; Steinmann, P.; Kuhl, E., On the mechanics of continua with boundary energies and growing surfaces, J. Mech. Phys. Solids, 61, 1446-1463, (2013)
[40] Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; Vanlandingham, M. R.; Kim, H.-C.; Volksen, W.; Miller, R. D.; Simonyi, E. E., A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nat. Mater., 3, 545-550, (2004)
[41] Sun, J.-Y.; Xia, S.; Moon, M.-Y.; Oh, K. H.; Kim, K.-S., Folding wrinkles of a thin stiff layer on a soft substrate, Proc. R. Soc. A, 468, 932-953, (2012)
[42] Tallinen, T.; Biggins, J. S.; Mahadevan, L., Surface sulci in squeezed soft solids, Phys. Rev. Lett., 110, 024302, (2013)
[43] Wang, L.; Pai, C.; Boyce, M. C.; Rutledge, G. C., Wrinkled surface topographies of electrospun polymer fibers, Appl. Phys. Lett., 94, 151916, (2009)
[44] Wu, J.; Cheng, Q. H.; Liu, B.; Zhang, Y. W.; Lu, W. B.; Hwang, K. C., Study on the axial compression buckling behaviors of concentric multi-walled cylindrical shells filled with soft materials, J. Mech. Phys. Solids, 60, 803-826, (2012)
[45] Yao, J. C., Buckling of axially compressed long cylindrical shell with elastic core, J. Appl. Mech., 29, 2, 329-334, (1962) · Zbl 0118.41402
[46] Ye, L.; Lu, G.; Ong, L. S., Buckling of a thin-walled cylindrical shell with foam core under axial compression, Thin Wall. Struct., 49, 106-111, (2011)
[47] Yin, J.; Chen, X.; Sheinman, I., Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems, J. Mech. Phys. Solids, 57, 1470-1484, (2009) · Zbl 1371.74205
[48] Zang, J. F.; Zhao, X. H.; Cao, Y. P.; Hutchinson, J. W., Localized ridge wrinkling of stiff films on compliant substrates, J. Mech. Phys. Solids, 60, 1265-1279, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.