zbMATH — the first resource for mathematics

An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. (English) Zbl 1349.74345
Summary: A Cartesian cut-cell method for viscous flows interacting with freely moving boundaries is presented. The method enables a sharp resolution of the embedded boundaries and strictly conserves mass, momentum, and energy. A new explicit Runge-Kutta scheme (PC-RK) is introduced by which the overall computational time is reduced by a factor of up to 2.5. The new scheme is a predictor-corrector type reformulation of a popular class of Runge-Kutta methods which substantially reduces the computational effort for tracking the moving boundaries and subsequently reinitializing the solver impairing neither stability nor accuracy. The structural motion is computed by an implicit scheme with good stability properties due to a strong-coupling strategy and the conservative discretization of the flow solver at the material interfaces. A new formulation for the treatment of small cut cells is proposed with high accuracy and robustness for arbitrary geometries based on a weighted Taylor-series approach solved via singular-value decomposition. The efficiency and the accuracy of the new method are demonstrated for several three-dimensional cases of laminar and turbulent particulate flow. It is shown that the new method remains fully conservative even for large displacements of the boundaries leading to a fast convergence of the fluid-solid coupling while spurious force oscillations inherent to this class of methods are effectively suppressed. The results substantiate the good stability and accuracy properties of the scheme even on relatively coarse meshes.

74S10 Finite volume methods applied to problems in solid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76N99 Compressible fluids and gas dynamics
Full Text: DOI
[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271, (1972) · Zbl 0244.92002
[2] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252, (1977) · Zbl 0403.76100
[3] Peskin, C. S., The fluid dynamics of heart valves: experimental, theoretical, and computational methods, Annu. Rev. Fluid Mech., 14, 235-259, (1982)
[4] Borazjani, I.; Ge, L.; Sotiropoulos, F., Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J. Comput. Phys., 227, 7587-7620, (2008) · Zbl 1213.76129
[5] Griffith, B. E.; Luo, X. Y.; McQueen, D. M.; Peskin, C. S., Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, J. Appl. Mech., 1, 137-177, (2009)
[6] Verzicco, R.; Mohd-Yusof, J.; Orlandi, P.; Haworth, D., Large eddy simulation in complex geometric configurations using boundary body forces, AIAA J., 38, 3, 427-433, (2000)
[7] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 1, 35-60, (2000) · Zbl 0972.76073
[8] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 3, 331-347, (2003)
[9] Schneiders, L.; Günther, C.; Grimmen, J.; Meinke, M.; Schröder, W., Sharp resolution of complex moving geometries using a multi-cut-cell viscous flow solver, (2015), AIAA Paper 2015-3427
[10] Juric, D.; Tryggvason, G., A front-tracking method for dentritic solidification, J. Comput. Phys., 123, 127-148, (1996) · Zbl 0843.65093
[11] Li, Z.; Soni, B., Fast and accurate numerical approaches for Stefan problems and crystal growth, Numer. Heat Transf., 35, 461-484, (1999)
[12] Gilmanov, A.; Sotiropoulos, F., A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, J. Comput. Phys., 207, 2, 457-492, (2005) · Zbl 1213.76135
[13] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F. M.; Vargas, A.; von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex geometries, J. Comput. Phys., 227, 4825-4852, (2008) · Zbl 1388.76263
[14] Shirgaonkar, A. A.; MacIver, M. A.; Patankar, N. A., A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion, J. Comput. Phys., 228, 7, 2366-2390, (2009) · Zbl 1275.76236
[15] Borazjani, I.; Daghoo, M., The fish tail motion forms an attached leading edge vortex, Proc. R. Soc. B, 280, 1-6, (2013)
[16] Bhalla, A. P.S.; Balea, R.; Griffith, B. E.; Patankar, N. A., A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies, J. Comput. Phys., 250, 446-476, (2013) · Zbl 1349.65403
[17] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 448-476, (2005) · Zbl 1138.76398
[18] Uhlmann, M., Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime, Phys. Fluids, 20, (2008) · Zbl 1182.76785
[19] Lucci, F.; Ferrante, A.; Elghobashi, S., Modulation of isotropic turbulence by particles of Taylor length-scale size, J. Fluid Mech., 650, 5-55, (2010) · Zbl 1189.76251
[20] Kempe, T.; Fröhlich, J., An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 9, 3663-3684, (2012) · Zbl 1402.76143
[21] Breugem, W.-P., A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, J. Comput. Phys., 231, 13, 4469-4498, (2012) · Zbl 1245.76064
[22] Kidanemariam, A. G.; Chan-Braun, C.; Doychev, T.; Uhlmann, M., Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction, New J. Phys., 15, (2013)
[23] Sambasivan, S. K.; Udaykumar, H. S., Ghost fluid method for strong shock interactions part 2: immersed solid boundaries, AIAA J., 47, 12, 2923-2937, (2009)
[24] Lauer, E.; Hu, X. Y.; Hickel, S.; Adams, N. A., Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics, Comput. Fluids, 69, 1-19, (2012) · Zbl 1365.76231
[25] Lauer, E.; Hu, X. Y.; Hickel, S.; Adams, N. A., Numerical investigation of collapsing cavity arrays, Phys. Fluids, 24, (2012) · Zbl 1365.76231
[26] Hartmann, D.; Meinke, M.; Schröder, W., An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods, Comput. Fluids, 37, 9, 1103-1125, (2008) · Zbl 1237.76085
[27] Han, L. H.; Hu, X. Y.; Adams, N. A., Adaptive multi-resolution method for compressible multi-phase flows with sharp interface model and pyramid data structure, J. Comput. Phys., 262, 131-152, (2014) · Zbl 1349.76338
[28] Schneiders, L.; Grimmen, J. H.; Meinke, M.; Schröder, W., An efficient numerical method for fully-resolved particle simulations on high-performance computers, Proc. Appl. Math. Mech., 15, 1, 495-496, (2015)
[29] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, (2005) · Zbl 1117.76049
[30] Clarke, D.; Salas, M.; Hassan, H., Euler calculations for multi-element airfoils using Cartesian grids, AIAA J., 24, 353-358, (1986) · Zbl 0587.76095
[31] Michler, C.; van Brummelen, E. H.; Hulshoff, S. J.; de Borst, R., The relevance of conservation for stability and accuracy of numerical methods for fluid-structure interaction, Comput. Methods Appl. Mech. Eng., 192, 37-38, 4195-4215, (2003) · Zbl 1181.74156
[32] Seo, J. H.; Mittal, R., A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations, J. Comput. Phys., 230, 19, 7347-7363, (2011) · Zbl 1408.76162
[33] Schneiders, L.; Hartmann, D.; Meinke, M.; Schröder, W., An accurate moving boundary formulation in cut-cell methods, J. Comput. Phys., 235, 786-809, (2013)
[34] Murman, S. M.; Aftosmis, M. J.; Berger, M. J., Implicit approaches for moving boundaries in a 3-D Cartesian method, (2003), AIAA Paper 2003-1119
[35] Örley, F.; Pasquariello, V.; Hickel, S.; Adams, N. A., Cut-element based immersed boundary method for moving geometries in compressible liquid flows with cavitation, J. Comput. Phys., 283, 1-22, (2015) · Zbl 1351.76121
[36] Merlen, A.; Frankiewicz, C., Cylinder rolling on a wall at low Reynolds numbers, J. Fluid Mech., 685, 461-494, (2011) · Zbl 1241.76132
[37] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253, (1974) · Zbl 0292.76018
[38] Sutherland, W., The viscosity of gases and molecular force, Philos. Mag., 36, 507-531, (1893) · JFM 25.1544.01
[39] Udaykumar, H. S.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174, 1, 345-380, (2001) · Zbl 1106.76428
[40] Siewert, C.; Kunnen, R. P.J.; Meinke, M.; Schröder, W., Orientation statistics and settling velocity of ellipsoids in decaying turbulence, Atmos. Res., 142, 45-56, (2014)
[41] Mortensen, P. H.; Andersson, H. I.; Gillissen, J. J.J.; Boersma, B. J., Dynamics of prolate ellipsoidal particles in a turbulent channel flow, Phys. Fluids, 20, (2008) · Zbl 1182.76539
[42] Lintermann, A.; Schlimpert, S.; Grimmen, J. H.; Günther, C.; Meinke, M.; Schröder, W., Massively parallel grid generation on HPC systems, Comput. Methods Appl. Mech. Eng., 277, 131-153, (2014) · Zbl 1423.76366
[43] Hartmann, D.; Meinke, M.; Schröder, W., Differential equation based constrained reinitialization for level set methods, J. Comput. Phys., 227, 6821-6845, (2008) · Zbl 1189.76366
[44] Hartmann, D.; Meinke, M.; Schröder, W., Erratum to “differential equation based constrained reinitialization for level set methods” [JCP 227 (2008) 6821-6845], J. Comput. Phys., 227, 22, 9696, (2008) · Zbl 1359.76204
[45] Hartmann, D.; Meinke, M.; Schröder, W., On accuracy and efficiency of constrained reinitialization, Int. J. Numer. Methods Fluids, 63, 11, 1347-1358, (2009) · Zbl 1195.65107
[46] Hartmann, D.; Meinke, M.; Schröder, W., The constrained reinitialization equation for level set methods, J. Comput. Phys., 229, 1514-1535, (2010) · Zbl 1329.76259
[47] Günther, C.; Meinke, M.; Schröder, W., A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods, Comput. Fluids, 102, 182-202, (2014)
[48] Günther, C.; Meinke, M.; Schröder, W., Application of a Cartesian-grid immersed boundary method to 3D in-cylinder flow, (ASME Internal Combustion Engine Division Fall Technical Conference, Vancouver, BC, Canada, (2012)), 687-696
[49] Hartmann, D.; Meinke, M.; Schröder, W., A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids, Comput. Methods Appl. Mech. Eng., 200, 1038-1052, (2011) · Zbl 1225.76211
[50] Aftosmis, M. J., Solution adaptive Cartesian grid methods for aerodynamic flows with complex geometries, Lecture Notes for 28th Computational Fluid Dynamics Lecture Series, vol. 1997-02, (1997), von Kármán Inst. for Fluid Dynamics Rhode-Saint-Genése, Belgium
[51] Liou, M.-S.; Steffen, C. J., A new flux splitting scheme, J. Comput. Phys., 107, 23-39, (1993) · Zbl 0779.76056
[52] Meinke, M.; Schröder, W.; Krause, E.; Rister, T., A comparison of second- and sixth-order methods for large-eddy simulation, Comput. Fluids, 31, 695-718, (2002) · Zbl 1027.76025
[53] Thornber, B.; Mosedale, A.; Drikakis, D.; Youngs, D.; Williams, R., An improved reconstruction method for compressible flows with low Mach number features, J. Comput. Phys., 227, 10, 4873-4894, (2008) · Zbl 1388.76188
[54] Berger, M.; Aftosmis, M. J.; Allmaras, S. R., Progress towards a Cartesian cut-cell method for viscous compressible flow, (2012), AIAA Paper 2012-1301
[55] van der Houwen, P. J., Explicit Runge-Kutta formulas with increased stability boundaries, Numer. Math., 20, 149-164, (1972) · Zbl 0233.65039
[56] van der Houwen, P. J., Construction of integration formulas for initial value problems, North-Holland Series in Applied Mathematics and Mechanics, vol. 19, (1977), North-Holland Amsterdam · Zbl 0359.65057
[57] Jameson, A., Solution of the Euler equations for two dimensional transonic flow by a multigrid method, Appl. Math. Comput., 13, 3-4, 327-355, (1983) · Zbl 0545.76065
[58] Jameson, A., Transonic flow calculations for aircraft, numerical methods in fluid dynamics, (Lecture Notes in Mathematics, vol. 1127, (1985), Springer-Verlag), 156-242
[59] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, (1981), AIAA Paper 1981-1259
[60] Swanson, R. C.; Turkel, E.; Rossow, C.-C., Convergence acceleration of Runge Kutta schemes for solving the Navier Stokes equations, J. Comput. Phys., 224, 1, 365-388, (2007) · Zbl 1261.76036
[61] Meinke, M.; Hänel, D., Time accurate multigrid solutions of the Navier-Stokes equations, (International Series of Numerical Mathematics, vol. 98, (1991), Springer-Verlag), 289-300 · Zbl 0729.76052
[62] van der Houwen, P. J.; Sommeijer, B. P., On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values, Z. Angew. Math. Mech., 60, 10, 479-485, (1980) · Zbl 0455.65052
[63] Verwer, J. G., Explicit Runge-Kutta methods for parabolic partial differential equations, Appl. Numer. Math., 22, 359-379, (1996) · Zbl 0868.65064
[64] Bayyuk, S. A.; Powell, K. G.; van Leer, B., Computation of flows with moving boundaries and fluid-structure interactions, (1997), AIAA Paper 97-32518
[65] Gray, J., On certain finite difference schemes for hyperbolic systems, Math. Comput., 18, 85, 1-18, (1964) · Zbl 0129.09903
[66] Chiang, Y.-L.; van Leer, B.; Powell, K. G., Simulation of unsteady inviscid flow on an adaptively refined Cartesian grid, (1992), AIAA Paper 92-0443
[67] Yang, G.; Causon, D. M.; Ingram, D. M., Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method, Int. J. Numer. Methods Fluids, 33, 1121-1151, (2000) · Zbl 0980.76052
[68] Pember, R. B.; Bell, J. B.; Colella, P.; Crutchfield, W. Y.; Welcome, M. L., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. Comput. Phys., 120, 278-304, (1995) · Zbl 0842.76056
[69] Colella, P.; Graves, D. T.; Keen, B. J.; Modiano, D., A Cartesian grid embedded boundary method for hyperbolic conservation laws, J. Comput. Phys., 211, 347-366, (2006) · Zbl 1120.65324
[70] Meyer, M.; Devesa, A.; Hickel, S.; Hu, X. Y.; Adams, N. A., A conservative immersed interface method for large-eddy simulation of incompressible flows, J. Comput. Phys., 229, 6300-6317, (2010) · Zbl 1425.76064
[71] Berger, M. J.; LeVeque, R. J., A rotated difference scheme for Cartesian grids in complex geometries, (1991), AIAA Paper CP-91-1602
[72] Helzel, C.; Berger, M. J.; LeVeque, R. J., A high-resolution rotated grid method for conservation laws with embedded geometries, SIAM J. Sci. Stat. Comput., 26, 3, 785-809, (2005) · Zbl 1074.35071
[73] Schlimpert, S.; Meinke, M.; Schröder, W., Nonlinear analysis of an acoustically excited laminar premixed flame, Combust. Flame, (2016), in press
[74] Berger, M. J.; Helzel, C.; LeVeque, R. J., H-box methods for the approximation of hyperbolic conservation laws on irregular grids, SIAM J. Numer. Anal., 41, 3, 893-918, (2003) · Zbl 1066.65082
[75] Hämmerlin, G.; Hoffmann, K. H., Numerical mathematics, (1991), Springer-Verlag New York
[76] Ang, S. J.; Yeo, K. S.; Chew, C. S.; Shu, C., A singular-value decomposition (SVD)-based generalized finite difference (GFD) method for close-interaction moving boundary flow problems, Int. J. Numer. Methods Eng., 76, 1892-1929, (2008) · Zbl 1195.76302
[77] Thomas, P. D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17, 10, 1030-1037, (1979) · Zbl 0436.76025
[78] Ahn, H. T.; Kallinderis, Y., Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes, J. Comput. Phys., 219, 671-696, (2006) · Zbl 1189.74035
[79] van Brummelen, E. H., Added mass effects of compressible and incompressible flows in fluid-structure interaction, J. Appl. Mech., 76, 2, (2009)
[80] Schiller, L.; Naumann, A. Z., Über die grundlegenden berechnungen bei der schwerkraftaufbereitung, Z. Ver. Dtsch. Ing., 77, 318-320, (1933)
[81] Mei, R.; Adrian, R. J., Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number, J. Fluid Mech., 237, 323-341, (1992) · Zbl 0747.76038
[82] Lawrence, C. J.; Mei, R., Long-time behaviour of the drag on a body in impulsive motion, J. Fluid Mech., 283, 307-327, (1995) · Zbl 0837.76021
[83] Daitche, A., Advection of inertial particles in the presence of the history force: higher order numerical schemes, J. Comput. Phys., 254, 93-106, (2013) · Zbl 1349.65223
[84] Clift, R.; Grace, J. R.; Weber, M. E., Bubbles, drops and particles, (1978), Academic Press New York
[85] Ern, P.; Risso, F.; Fabre, D.; Magnaudet, J., Wake-induced oscillatory paths of bodies freely rising or falling in fluids, Annu. Rev. Fluid Mech., 44, 97-121, (2012) · Zbl 1355.76019
[86] Uhlmann, M.; Dǔsek, J., The motion of a single heavy sphere in ambient fluid: a benchmark for interface-resolved particulate flow simulations with significant relative velocities, Int. J. Multiph. Flow, 59, 221-243, (2014)
[87] Jeffery, G. B., The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A, 102, 161-179, (1922) · JFM 49.0748.02
[88] Mao, W.; Alexeev, A., Motion of spheroid particles in shear flow with inertia, J. Fluid Mech., 749, 145-166, (2014)
[89] Gao, H.; Li, H.; Wang, L.-P., Lattice Boltzmann simulation of turbulent flow laden with finite-size particles, Comput. Methods Appl., 65, 2, 194-210, (2013) · Zbl 1268.76045
[90] Orszag, S. A., Numerical methods for the simulation of turbulence, Phys. Fluids, 12, II-250-II-257, (1969) · Zbl 0217.25803
[91] Glowinski, R.; Pan, T. W.; Hesla, T. I.; Joseph, D. D.; Périaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow part moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 363-426, (2001) · Zbl 1047.76097
[92] Sommeijer, B. P.; Kok, J., Implementation and performance of the time integration of a 3D numerical transport model, Int. J. Numer. Methods Fluids, 21, 4, 349-367, (2005) · Zbl 0841.76059
[93] Clair, B. P.L.; Hamielec, A. E.; Pruppacher, H. R., A numerical study of the drag on a sphere at low and intermediate Reynolds numbers, J. Atmos. Sci., 27, 308-315, (1970)
[94] Ghidersa, B.; Dǔsek, J., Breaking of axisymetry and onset of unsteadiness in the wake of a sphere, J. Fluid Mech., 423, 33-69, (2000) · Zbl 0977.76028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.