×

zbMATH — the first resource for mathematics

Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: application to open-loop control. (English) Zbl 1349.76129
Summary: A fully discrete formalism is introduced to perform stability analysis of a turbulent compressible flow whose dynamics is modeled with the Reynolds-Averaged Navier-Stokes (RANS) equations. The discrete equations are linearized using finite differences and the Jacobian is computed using repeated evaluation of the residuals. Stability of the flow is assessed solving an eigenvalue problem. The sensitivity gradients which indicate regions of the flow where a passive control device could stabilize the unstable eigenvalues are defined within this fully discrete framework. The second order finite differences are applied to the discrete residual to compute the gradients. In particular, the sensitivity gradients are shown to be linked to the Hessian of the RANS equations. The introduced formalism and linearization method are generic: the code used to evaluate the residual of the RANS equations can be used in a black box manner, and the complex linearization of the Hessian is avoided. The method is tested on a two dimensional deep cavity case, the flow is turbulent with a Reynolds number equal to 860,000 and compressible with a Mach number of 0.8. Several turbulence models and numerical schemes are used to validate the method. Physical features of the flow are recovered, such as the fundamental frequency of the natural flow as well as acoustic mechanisms, suggesting the validity of the method. The sensitivity gradients are then computed and validated, the error in predicting the eigenvalue variation being found less than 3%. Control maps using a small steady control device are finally obtained, indicating that the control area should be chosen in the vicinity of the leading edge of the cavity.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76Nxx Compressible fluids and gas dynamics
93B35 Sensitivity (robustness)
Software:
elsA; ARPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gad-el Hak, M.; Pollard, A.; Bonnet, J.-P., Flow control: fundamentals and practices, (1998), Springer-Verlag Berlin
[2] Collis, S.; Joslin, R.; Seifert, A.; Theofilis, V., Issues in active flow control: theory, control, simulation, and experiment, Prog. Aerosp. Sci., 40, 4-5, 237-289, (2004)
[3] Huerre, P.; Monkewitz, P. A., Local and global instabilities in spatially developing flows, Annu. Rev. Fluid Mech., 22, 473-537, (1990) · Zbl 0734.76021
[4] Godrèche, C.; Manneville, P., Hydrodynamics and nonlinear instabilities, vol. 3, (1998), Cambridge Univ. Press
[5] Sipp, D.; Marquet, O.; Meliga, O.; Barbagallo, A., Dynamics and control of global instabilities in open flows: a linearized approach, Appl. Mech. Rev., 63, 030801, (2010)
[6] Chomaz, J.-M., Global instabilities in spatially developing flows: non-normality and nonlinearity, Annu. Rev. Fluid Mech., 37, 357, (2005) · Zbl 1117.76027
[7] Giannetti, F.; Luchini, P., Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech., 581, 167-197, (2007) · Zbl 1115.76028
[8] Kim, J.; Bewley, T. R., A linear systems approach to flow control, Annu. Rev. Fluid Mech., 39, 383-417, (2007) · Zbl 1296.76074
[9] Sipp, D., Open-loop control of cavity oscillations with harmonic forcings, J. Fluid Mech., 708, 439, (2012) · Zbl 1275.76089
[10] Marquet, O.; Sipp, D.; Jacquin, L., Sensitivity analysis and passive control of cylinder flow, J. Fluid Mech., 615, 221-252, (2008) · Zbl 1165.76012
[11] D.C. Hill, A theoretical approach for analyzing the restabilization of wakes, AIAA 1992-0067.
[12] Strykowski, P. J.; Sreenivasan, K. R., On the formation and suppression of vortex shedding at low Reynolds-numbers, J. Fluid Mech., 218, 71-107, (1990)
[13] Rodi, W., Comparison of LES and RANS calculations of the flow around bluff bodies, J. Wind Eng. Ind. Aerodyn., 69, 55-75, (1997)
[14] Iaccarino, G.; Ooi, A.; Durbin, P.; Behnia, M., Reynolds averaged simulation of unsteady separated flow, Int. J. Heat Fluid Flow, 24, 2, 147-156, (2003)
[15] Deck, S., Numerical simulation of transonic buffet over a supercritical airfoil, AIAA J., 43, 7, 1556-1566, (2005)
[16] Lawson, S.; Barakos, G., Review of numerical simulations for high-speed, turbulent cavity flows, Prog. Aerosp. Sci., 47, 186-216, (2011)
[17] Crouch, J. D.; Garbaruk, A.; Magidov, D., Predicting the onset of flow unsteadiness based on global instability, J. Comput. Phys., 224, 2, 924-940, (2007) · Zbl 1123.76018
[18] Crouch, J. D.; Garbaruk, A.; Magidov, D.; Travin, A., Origin of transonic buffet on aerofoils, J. Fluid Mech., 628, 357-369, (2009) · Zbl 1181.76092
[19] Spalart, P. R.; Allmaras, S. R., A one-equation turbulence model for aerodynamic flows, Rech. Aérosp., 1, 5-21, (1994)
[20] Meliga, P.; Pujals, G.; Serre, E., Sensitivity of 2-D turbulent flow pas a D-shaped cylinder using global stability, Phys. Fluids, 24, 061701, (2012)
[21] Sipp, D.; Lebedev, A., Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows, J. Fluid Mech., 593, 333-358, (2007) · Zbl 1172.76318
[22] Parezanović, V.; Cadot, O., Experimental sensitivity analysis of the global properties of a two-dimensional turbulent wake, J. Fluid Mech., 1, 1, 1-35, (2012)
[23] Peter, J.; Dwight, R., Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches, Comput. Fluids, 39, 3, 373-391, (2010) · Zbl 1242.76301
[24] Giles, M. B.; Pierce, N. A., An introduction to the adjoint approach to design, Flow Turbul. Combust., 65, 3-4, 393-415, (2000) · Zbl 0996.76023
[25] S. Nadarajah, A. Jameson, Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization, AIAA paper 2001-2530.
[26] De Pando, M.; Sipp, D.; Schmid, P., Efficient evaluation of the direct and adjoint linearized dynamics from compressible flow solvers, J. Comput. Phys., 231, 7739-7755, (2012) · Zbl 1322.76047
[27] Giles, M. B.; Pierce, N. A., Analytic adjoint solutions for the quasi-one-dimensional Euler equations, J. Fluid Mech., 426, 327-345, (2001) · Zbl 0967.76079
[28] Peter, J.; Drullion, F., Large stencil viscous flux linearization for the simulation of 3D compressible turbulent flows with backward-Euler schemes, Comput. Fluids, 36, 1005-1027, (2007) · Zbl 1194.76162
[29] Poinsot, T.; Lelef, S., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 1, 104-129, (1992) · Zbl 0766.76084
[30] A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, 1981-1259.
[31] Lerat, A.; Corre, C., A residual-based compact scheme for the compressible Navier-Stokes equations, J. Comput. Phys., 170, 2, 642-675, (2001) · Zbl 1005.76069
[32] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372, (1981) · Zbl 0474.65066
[33] Van Leer, B., Flux-vector splitting for the Euler equation, (1997), Springer
[34] van Albada, G.; van Leer, B.; Roberts, W. W., A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., 108, 76-84, (1982) · Zbl 0492.76117
[35] Forestier, N.; Jacquin, L.; Geffroy, P., The mixing layer over a deep cavity at high-subsonic speed, J. Fluid Mech., 475, 101-145, (2003) · Zbl 1045.76504
[36] Bottaro, A.; Corbett, P.; Luchini, P., The effect of base flow variation on flow stability, J. Fluid Mech., 476, 293-302, (2003) · Zbl 1041.76029
[37] Brès, G. A.; Colonius, T., Three-dimensional instabilities in compressible flow over open cavities, J. Fluid Mech., 599, 309-339, (2008) · Zbl 1151.76468
[38] Mack, C.; Schmid, P., A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows, J. Comput. Phys., 229, 3, 541-560, (2010) · Zbl 1253.76042
[39] Lehoucq, R.; Sorensen, D.; Yang, C., ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, vol. 6, (1998), SIAM · Zbl 0901.65021
[40] Mamun, C. K.; Tuckerman, L. S., Asymmetry and Hopf bifurcation in spherical Couette flow, Phys. Fluids, 7, 80, (1995) · Zbl 0836.76033
[41] Bagheri, S.; Åkervik, E.; Brandt, L.; Henningson, D. S., Matrix-free methods for the stability and control of boundary layers, AIAA J., 47, 5, 1057-1068, (2009)
[42] Bagheri, S.; Schlatter, P.; Schmid, P.; Henningson, D., Global stability of a jet in crossflow, J. Fluid Mech., 624, 33-44, (2009) · Zbl 1171.76372
[43] Gomez, F.; Gomez, R.; Theofilis, V., On three-dimensional global linear instability analysis of flows with standard aerodynamics codes, Aerosp. Sci. Technol., 32, 223-234, (2014)
[44] Theofilis, V., Global linear instability, Annu. Rev. Fluid Mech., 43, 319-352, (2011) · Zbl 1299.76074
[45] Knoll, D.; Keyes, D., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 2, 357-397, (2004) · Zbl 1036.65045
[46] An, H.-B.; Wen, J.; Feng, T., On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method, J. Comput. Appl. Math., 236, 6, 1399-1409, (2011) · Zbl 1258.65049
[47] J. Sobieszczanski-Sobieski, The case for aerodynamic sensitivity analysis, Technical report CP 2457, NASA. · Zbl 0939.90596
[48] G. Candler, R. MacCormack, Hypersonic flow past 3-D configuration, AIAA Paper 87-0480.
[49] Wilcox, D., Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., 26, 11, 1299-1310, (1988) · Zbl 0664.76057
[50] Cambier, L.; Heib, S.; Plot, S., The ONERA elsa CFD software: input from research and feedback from industry, Mech. Ind., 14, 159-174, (2013)
[51] Martinelli, L., Calculations of viscous flows with a multigrid method, (1987), Princeton, Ph.D. thesis
[52] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136, (1979) · Zbl 1364.65223
[53] Mary, I.; Sagaut, P.; Deville, M., An algorithm for unsteady viscous flows at all speeds, Int. J. Numer. Methods Fluids, 34, 5, 371-401, (2000) · Zbl 1003.76057
[54] Harten, A.; Hyman, H., Self adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys., 50, 235-269, (1983) · Zbl 0565.65049
[55] Zheng, X.; Lia, C.; Sung, C.; Huand, T., Multigrid computation of incompressible flows using two-equation turbulence models: part I - numerical method, J. Fluids Eng., 119, 893-899, (1997)
[56] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA 92-439.
[57] Peter, J., Discrete adjoint method in elsa (part I): method/theory, (Proceedings of the ONERA-DLR Aerospace Symposium (ODAS), Toulouse, (2006))
[58] El Din, I. S.; Carrier, G.; Mouton, S., Discrete adjoint method in elsa (part 2): application to aerodynamic design optimisation, (Proceedings of the 7th ONERA-DLR Aerospace Symposium (ODAS), Toulouse, (2006))
[59] Peter, J.; Nguyen-Dinh, M.; Trontin, P., Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates. with applications to Euler flows, Comput. Fluids, 66, 194-214, (2012)
[60] Renac, F., Improvement of the recursive projection method for linear iterative scheme stabilization based on an approximate eigenvalue problem, J. Comput. Phys., 230, 14, 5739-5752, (2011) · Zbl 1220.65040
[61] J. Rossiter, Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, Royal Aircraft Establishment ARC R&M 3438 (1964).
[62] Larchevêque, L.; Sagaut, P.; Labbé, O., Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects, J. Fluid Mech., 577, 1, 105-126, (2007) · Zbl 1125.76035
[63] Yamouni, S., Contrôle en boucle ouverte des instationnarités de cavité en régime transsonique, (2013), Ecole Polytechnique, Ph.D. thesis
[64] Deck, S.; Weiss, P.; Pamiès, M.; Garnier, E., Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer, Comput. Fluids, 48, 1, 1-15, (2011) · Zbl 1271.76127
[65] Yamouni, S.; Sipp, D.; Jacquin, L., Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis, J. Fluid Mech., 717, 134-165, (2013) · Zbl 1284.76181
[66] East, L., Aerodynamically induced resonance in rectangular cavities, J. Sound Vib., 3, 3, 277-287, (1966)
[67] Hein, S.; Hohage, T.; Koch, W., On resonances in open systems, J. Fluid Mech., 506, 255-284, (2004) · Zbl 1073.76062
[68] Hein, S.; Koch, W., Acoustic resonances and trapped modes in pipes and tunnels, J. Fluid Mech., 605, 401-428, (2008) · Zbl 1145.76042
[69] Hein, S.; Koch, W.; Nannen, L., Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems, J. Fluid Mech., 692, 257-287, (2012) · Zbl 1250.76150
[70] Juan, C.; Jiménez, J., Linear energy amplification in turbulent channels, J. Fluid Mech., 559, 205-213, (2006) · Zbl 1095.76021
[71] Cossu, C.; Pujals, G.; Depardon, S., Optimal transient growth and very large-scale structures in turbulent boundary layers, J. Fluid Mech., 619, 79, (2009) · Zbl 1156.76400
[72] Hwang, Y.; Cossu, C., Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number, J. Fluid Mech., 643, 333, (2010) · Zbl 1189.76191
[73] H. Illy, P. Geffroy, L. Jacquin, Observations on the passive control of flow oscillations over a cavity in a transonic regime by means of a spanwise cylinder, AIAA 2008-3774.
[74] Yamouni, S.; Mettot, C.; Sipp, D.; Jacquin, L., Passive control of cavity flows, AerospaceLab J., 6, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.