×

zbMATH — the first resource for mathematics

The multiscale restriction smoothed basis method for fractured porous media (F-MSRSB). (English) Zbl 1349.76385
Summary: A novel multiscale method for multiphase flow in heterogeneous fractured porous media is devised. The discrete fine-scale system is described using an embedded fracture modeling approach, in which the heterogeneous rock (matrix) and highly-conductive fractures are represented on independent grids. Given this fine-scale discrete system, the method first partitions the fine-scale volumetric grid representing the matrix and the lower-dimensional grids representing fractures into independent coarse grids. Then, basis functions for matrix and fractures are constructed by restricted smoothing, which gives a flexible and robust treatment of complex geometrical features and heterogeneous coefficients. From the basis functions one constructs a prolongation operator that maps between the coarse- and fine-scale systems. The resulting method allows for general coupling of matrix and fracture basis functions, giving efficient treatment of a large variety of fracture conductivities. In addition, basis functions can be adaptively updated using efficient global smoothing strategies to account for multiphase flow effects. The method is conservative and because it is described and implemented in algebraic form, it is straightforward to employ it to both rectilinear and unstructured grids. Through a series of challenging test cases for single and multiphase flow, in which synthetic and realistic fracture maps are combined with heterogeneous petrophysical matrix properties, we validate the method and conclude that it is an efficient and accurate approach for simulating flow in complex, large-scale, fractured media.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
Software:
MRST; Matlab; C-AMS; MRST-AD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aziz, K.; Settari, A., Petroleum reservoir simulation, (1979), Blitzprint Ltd. Calgary, Alberta
[2] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189, (1997) · Zbl 0880.73065
[3] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67, (2003) · Zbl 1047.76538
[4] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, J. Comput. Phys., 217, 627-641, (2006) · Zbl 1160.76373
[5] Efendiev, Y.; Hou, T. Y., Multiscale finite element methods: theory and applications, (2009), Springer · Zbl 1163.65080
[6] Kippe, V.; Aarnes, J. E.; Lie, K.-A., A comparison of multiscale methods for elliptic problems in porous media flow, Comput. Geosci., 12, 377-398, (2008) · Zbl 1259.76047
[7] Aarnes, J. E.; Kippe, V.; Lie, K.-A., Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels, Adv. Water Resour., 28, 257-271, (2005)
[8] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci., 12, 297-315, (2008) · Zbl 1259.76065
[9] Hajibeygi, H.; Jenny, P., Adaptive iterative multiscale finite volume method, J. Comput. Phys., 230, 628-643, (2011) · Zbl 1283.76041
[10] Lunati, I.; Jenny, P., Multiscale finite-volume method for density-driven flow in porous media, Comput. Geosci., 12, 337-350, (2008) · Zbl 1259.76051
[11] Møyner, O.; Lie, K.-A., A multiscale two-point flux-approximation method, J. Comput. Phys., 275, 273-293, (2014) · Zbl 1349.76368
[12] Hajibeygi, H.; Deb, R.; Jenny, P., Multiscale finite volume method for non-conformal coarse grids arising from faulted porous media, (Proceedings of SPE Reservoir Simulation Symposium, (2011))
[13] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Monotone multiscale finite volume method, Comput. Geosci., 1-16, (2015)
[14] Hajibeygi, H.; Jenny, P., Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media, J. Comput. Phys., 228, 5129-5147, (2009) · Zbl 1280.76019
[15] Zhou, H.; Tchelepi, H. A., Operator based multiscale method for compressible flow, SPE J., 13, 267-273, (2008)
[16] Jenny, P.; Lunati, I., Modeling complex wells with the multi-scale finite volume method, J. Comput. Phys., 228, 687-702, (2009) · Zbl 1155.76040
[17] Lee, S. H.; Zhou, H.; Techelpi, H., Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations, J. Comput. Phys., 228, 9036-9058, (2009) · Zbl 1388.76179
[18] Møyner, O.; Lie, K.-A., The multiscale finite-volume method on stratigraphic grids, SPE J., 19, 816-831, (2014)
[19] Hajibeygi, H.; Lee, S. H.; Lunati, I., Accurate and efficient simulation of multiphase flow in a heterogeneous reservoir by using error estimate and control in the multiscale finite-volume framework, SPE J., 17, 1071-1083, (2012)
[20] Hajibeygi, H.; Bonfigli, G.; Hesse, M. A.; Jenny, P., Iterative multiscale finite-volume method, J. Comput. Phys., 227, 8604-8621, (2008) · Zbl 1151.65091
[21] Zhou, H.; Tchelepi, H. A., Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models, SPE J., 17, 523-539, (2012)
[22] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Algebraic multiscale linear solver for heterogeneous elliptic problems, J. Comput. Phys., 259, 284-303, (2014) · Zbl 1349.76835
[23] Tene, M.; Wang, Y.; Hajibeygi, H., Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media, J. Comput. Phys., 300, 679-694, (2015) · Zbl 1349.76272
[24] Trottenberg, U.; Oosterlee, C. W.; Schueller, A., Multigrid, (2001), Elsevier Academic Press
[25] Lee, S. H.; Wolfsteiner, C.; Tchelepi, H. A., Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity, Comput. Geosci., 12, 351-366, (2008) · Zbl 1259.76049
[26] Hajibeygi, H.; Tchelepi, H. A., Compositional multiscale finite-volume formulation, SPE J., 19, 316-326, (2014)
[27] Møyner, O.; Lie, K.-A., The multiscale finite volume method on unstructured grids, (Proceedings of SPE Reservoir Simulation Symposium, (2014))
[28] Cusini, M.; Lukyanov, A.; Natvig, J.; Hajibeygi, H., Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media, J. Comput. Phys., 299, 472-486, (2015) · Zbl 1351.76055
[29] Barenblatt, G.; Zheltov, Y.; Kochina, I., Basic concepts in the theory of seepage of homogeneous fluids in fissurized rocks, J. Appl. Math. Mech., 5, 1286-1303, (1983) · Zbl 0104.21702
[30] Warren, J.; Root, P., The behavior of naturally fractured reservoirs, SPE J., 3, 245-255, (1963)
[31] Kazemi, H., Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, SPE J., 9, 451-462, (1969)
[32] Thomas, L. K.; Dixon, T. N.; Pierson, R. G., Fractured reservoir simulation, SPE J., 23, 42-54, (1983)
[33] Baca, R.; Arnett, R.; Langford, D., Modeling fluid flow in fractured porous rock masses by finite element techniques, Int. J. Numer. Methods Fluids, 4, 337-348, (1984) · Zbl 0579.76095
[34] Lee, S. H.; Lough, M. F.; Jensen, C. L., Hierarchical modeling of flow in naturally fractured formations with multiple length scales, Water Resour. Res., 37, 443-455, (2001)
[35] Lee, S. H.; Jensen, C. L.; Lough, M. F., Efficient finite-difference model for flow in a reservoir with multiple length-scale fractures, SPE J., 3, 268-275, (2000)
[36] Li, L.; Lee, S. H., Efficient field-scale simulation of black oil in naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reserv. Eval. Eng., 11, 750-758, (2008)
[37] Natvig, J. R.; Skaflestad, B.; Bratvedt, F.; Bratvedt, K.; Lie, K.-A.; Laptev, V.; Khataniar, S. K., Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs, SPE J., 16, 880-888, (2009)
[38] Gulbransen, A. F.; Hauge, V. L.; Lie, K.-A., A multiscale mixed finite element method for vuggy and naturally fractured reservoirs, SPE J., 15, 395-403, (2010)
[39] Barkve, T.; Firoozabadi, A., Analysis of reinfiltration in fractured porous media, (Proceedings of SPE Annual Technical Conference and Exhibition, (1992))
[40] Noorishad, J.; Mehran, M., An upstream finite element method for solution of transient transport equation in fractured porous media, Water Resour. Res., 3, 588-596, (1982)
[41] Karimi-Fard, M.; Firoozabadi, A., Numerical simulation of water injection in 2D fractured media using discrete-fracture model, (Proceedings of SPE Annual Technical Conference and Exhibition, (2001))
[42] Karimi-Fard, M.; Durlofsky, L. J.; Aziz, K., An efficient discrete-fracture model applicable for general-purpose reservoir simulators, SPE J., 9, 227-236, (2004)
[43] Moinfar, A.; Varavei, A.; Sepehrnoori, K.; Johns, R. T., Development of a coupled dual continuum and discrete fracture model for the simulation of unconventional reservoirs, (Proceedings of SPE Reservoir Simulation Symposium, (2013))
[44] Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A.H.; Pal, M., Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model, J. Comput. Phys., 284, 462-489, (2015) · Zbl 1351.74073
[45] Hajibeygi, H., Iterative multiscale finite-volume method for multiphase flow in porous media with complex physics, (2011), ETH Zurich Switzerland, PhD thesis
[46] Moinfar, A.; Sepehrnoori, K.; Johns, R. T.; Varavei, A., Coupled geomechanics and flow simulation for an embedded discrete fracture model, (Proceedings of SPE Reservoir Simulation Symposium, (2013))
[47] Hajibeygi, H.; Karvounis, D.; Jenny, P., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 8729-8743, (2011) · Zbl 1370.76095
[48] Ligaarden, I. S.; Krokiewski, M.; Lie, K.-A.; Schmid, D. W.; Pal, M., On the Stokes-Brinkman equations for modeling flow in carbonate reservoirs, (Proceedings of ECMOR XII—12th European Conference on the Mathematics of Oil Recovery, (2010))
[49] Sandve, T. H.; Berre, I.; Keilegavlen, E.; Nordbotten, J. M., Multiscale simulation of flow and heat transport in fractured geothermal reservoirs: inexact solvers and improved transport upscaling, (Proceedings of Thirty-Eighth Workshop on Geothermal Reservoir Engineering, (2013), Stanford University USA)
[50] Tene, M.; Al Kobaisi, M. S.; Hajibeygi, H., Algebraic multiscale solver for flow in heterogeneous fractured porous media, (Proceedings of SPE Reservoir Simulation Symposium, (2015))
[51] Tene, M.; Al Kobaisi, M. S.; Hajibeygi, H., Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS), J. Comput. Phys., (2015), submitted for publication
[52] Møyner, O.; Lie, K.-A., A multiscale method based on restriction-smoothed basis functions suitable for general grids in high contrast media, (Proceedings of SPE Reservoir Simulation Symposium, (2015))
[53] Møyner, O.; Lie, K.-A., A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, J. Comput. Phys., 304, 46-71, (2015) · Zbl 1349.76824
[54] Møyner, O.; Lie, K.-A., A multiscale restriction-smoothed basis method for compressible black-oil models, SPE J., (2016), in press
[55] Hilden, S. T.; Møyner, O.; Lie, K.-A.; Bao, K., Multiscale simulation of polymer flooding with shear effects, Transp. Porous Media, (2016), in press
[56] Christie, M. A.; Blunt, M. J., Tenth SPE comparative solution project: a comparison of upscaling techniques, SPE Reserv. Eval. Eng., 4, 308-317, (2001)
[57] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 359-392, (1998) · Zbl 0915.68129
[58] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Algebraic multiscale solver for flow in heterogeneous porous media, J. Comput. Phys., 259, 284-303, (2014) · Zbl 1349.76835
[59] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM USA · Zbl 1002.65042
[60] The MATLAB Reservoir Simulation Toolbox (MRST), version 2015a, SINTEF Applied Mathematics, May 2015.
[61] Lie, K.-A., An introduction to reservoir simulation using MATLAB: user guide for the Matlab reservoir simulation toolbox (MRST), (Dec. 2015), SINTEF ICT
[62] Fung, L. S.K.; Dogru, A. H., Distributed unstructured grid infrastructure for complex reservoir simulation, (Proceedings of Europec/EAGE Conference and Exhibition, (2008))
[63] Kozlova, A.; Li, Z.; Natvig, J. R.; Watanabe, S.; Zhou, Y.; Bratvedt, K.; Lee, S. H., A real-field multiscale black-oil reservoir simulator, (Proceedings of SPE Reservoir Simulation Symposium, (2015))
[64] Vanek, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 179-196, (1996) · Zbl 0851.65087
[65] Vanek, P., Acceleration of convergence of a two-level algorithm by smoothing transfer operator, Appl. Math., 37, 265-274, (1992) · Zbl 0773.65021
[66] Guillard, H.; Vanek, P., An aggregation multigrid solver for convection-diffusion problems on unstructured meshes, (1998), Center for Computational Mathematics, University of Colorado at Boulder, Technical report
[67] Lie, K.-A.; Krogstad, S.; Ligaarden, I. S.; Natvig, J. R.; Nilsen, H. M.; Skaflestad, B., Open-source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 297-322, (2012) · Zbl 1348.86002
[68] Krogstad, S.; Lie, K.-A.; Møyner, O.; Nilsen, H. M.; Raynaud, X.; Skaflestad, B., MRST-AD - an open-source framework for rapid prototyping and evaluation of reservoir simulation problems, (Proceedings of SPE Reservoir Simulation Symposium, (2015))
[69] Bisdom, K.; Gauthier, B. D.M.; Bertotti, G.; Hardebol, N. J., Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: implications for naturally fractured reservoir modeling, Am. Assoc. Pet. Geol. Bull., 24, 1351-1376, (2014)
[70] Pollock, D. W., Semianalytical computation of path lines for finite-difference models, Ground Water, 26, 743-750, (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.