zbMATH — the first resource for mathematics

Adjoint complement to viscous finite-volume pressure-correction methods. (English) Zbl 1349.76391
Summary: A hybrid-adjoint Navier-Stokes method for the pressure-based computation of hydrodynamic objective functional derivatives with respect to the shape is systematically derived in three steps: The underlying adjoint partial differential equations and boundary conditions for the frozen-turbulence Reynolds-averaged Navier-Stokes equations are considered in the first step. In step two, the adjoint discretisation is developed from the primal, unstructured finite-volume discretisation, such that adjoint-consistent approximations to the adjoint partial differential equations are obtained following a so-called hybrid-adjoint approach. A unified, discrete boundary description is outlined that supports high- and low-Reynolds number turbulent wall-boundary treatments for both the adjoint boundary condition and the boundary-based gradient formula. The third component focused in the development of the industrial adjoint CFD method is the adjoint counterpart to the primal pressure-correction algorithm. The approach is verified against the direct-differentiation method and an application to internal flow problems is presented.

76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Anderson, W. K.; Bonhaus, D. L., Airfoil design on unstructured grids for turbulent flows, AIAA J., 37, 2, 185-191, (1999)
[2] Borrvall, T.; Petersson, J., Topology optimization of fluids in Stokes flow, Int. J. Numer. Methods Fluids, 41, 77-107, (2003) · Zbl 1025.76007
[3] L.S. Caretto, A.D. Gosman, S.V. Patankar, D.B. Spalding, Two calculation procedures for steady, three-dimensional flows with recirculation, in: Proceedings of the Third International Conference on Numerical Methods in Fluid Dynamics, 1972, pp. 60-68. · Zbl 0255.76031
[4] A. Carnarius, B. Günther, F. Thiele, D. Wachsmuth, F. Tröltzsch, J.C. de los Reyes, Numerical study of the optimization of separation control, AIAA-2007-58, 2007.
[5] Collis, S. S.; Chang, Y., Computer simulation of active control in complex turbulent flows, Model. Simul. Based Eng., I, 851-856, (1998)
[6] Dwight, R. P.; Brezillon, J., Effect of approximations of the discrete adjoint on gradient-based optimization, AIAA J., 44, 12, 3022-3031, (2006)
[7] Elliott, J.; Peraire, J., Practical three-dimensional aerodynamic design and optimization using unstructured meshes, AIAA J., 35, 9, 1479-1485, (1997) · Zbl 0900.76420
[8] O. Enoksson, P. Weinerfeld, Numerical methods for aerodynamic optimization, in: Eighth Int. Symp. on CFD, Bremen, Germany, September 5-10, 1999.
[9] Ferziger, J. H.; Peric, M., Computational methods for fluid dynamics, (2002), Springer · Zbl 0998.76001
[10] Gersborg-Hansen, A.; Sigmund, O.; Haber, R. B., Topology optimization of channel flow problems, Struct. Multidisc. Optim., 30, 181-192, (2005) · Zbl 1243.76034
[11] Giering, R.; Kaminski, T., Recipes for adjoint code construction, ACM Trans. Math. Softw., 24, 4, 437-474, (1998) · Zbl 0934.65027
[12] M. Giles, Adjoint equations in CFD: Duality, boundary conditions and solution behaviour, AIAA-1997-1850, 1997.
[13] Giles, M. B.; Duta, M. C.; Müller, J.-D.; Pierce, N. A., Algorithm developments for discrete adjoint methods, AIAA J., 41, 2, 198-205, (2003)
[14] Giles, M. B.; Pierce, N. A., An introduction to the adjoint approach to design, Flow Turbul. Combust., 65, 393-415, (2001) · Zbl 0996.76023
[15] Guest, J. K.; Prévost, J. H., Topology optimization of creeping fluid flows using a darcy – stokes finite element, Int. J. Numer. Methods Eng., 66, 461-484, (2006) · Zbl 1110.76310
[16] Hartmann, R.; Held, J.; Leicht, T., Adjoint-based error estimation and adaptive mesh refinement for the RANS and k-ω turbulence model equations, J. Comput. Phys., 230, 11, 4268-4284, (2010) · Zbl 1343.76044
[17] J. Hicken, D. Zingg, The role of dual consistency in functional accuracy: error estimation and superconvergence, AIAA-2011-3855, 2011.
[18] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 3, 233-260, (1988) · Zbl 0676.76055
[19] A. Jameson, Optimum aerodynamic design using CFD and control theory, AIAA-1995-1729-CP, 1995.
[20] A. Jameson, S. Kim, Reduction of the adjoint gradient formula in the continuous limit, AIAA-2003-0040, 2003.
[21] Jameson, A.; Martinelli, L.; Pierce, N. A., Optimum aerodynamic design using the navier – stokes equations, Theor. Comput. Fluid Dyn., 10, 213-237, (1998) · Zbl 0912.76067
[22] A. Jameson, Sriram, L. Martinelli, A continuous adjoint method for unstructured grids, AIAA-2003-3955, 2003.
[23] Jameson, A.; Vassberg, J. C., Studies of alternative numerical optimization methods applied to the brachistochrone problem, Int. J. Comput. Fluid Dyn., 9, 3, 281-296, (2000)
[24] Jaworski, A.; Müller, J.-D., Advances in automatic differentiation, (Lecture Notes in Computational Science and Engineering, vol. 64, (2008), Springer), 281-291, (Ch. Toward Modular Multigrid Design Optimisation)
[25] Jones, W. P.; Launder, B. E., The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, 15, 301-315, (1972)
[26] Kim, J., Control of turbulent boundary layers, Phys. Fluids, 15, 5, 1093-1105, (2003) · Zbl 1186.76283
[27] Lien, F. S.; Leschziner, M. A., A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, part 1: computational implementation, Comput. Methods Appl. Mech. Eng., 114, 123-148, (1994)
[28] Z. Liu, A. Sandu, Analysis of discrete adjoints for upwind numerical schemes, in: Computational Science - ICCS 2005: Fifth International Conference, Atlanta, GA, USA, Part II, 2005. · Zbl 1128.86303
[29] C. Lozano, I.R. Juretschke, Adjoint-based corrections of non-converged CFD solutions, AIAA-2009-4144, 2009.
[30] Lozano, C.; Ponsin, J., Remarks on the numerical solution of the adjoint quasi-one-dimensional Euler equations, Int. J. Numer. Methods Fluids., (2011) · Zbl 1253.76068
[31] J. Lu, D.L. Darmofal, Adaptive precision methodology for optimization via discretization and iteration error control, AIAA-2004-1096, 2004.
[32] Mavriplis, D. J., Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes, AIAA J., 45, 4, 740-750, (2007)
[33] Mohammadi, B., Mesh adaption and automatic differentiation for optimal shape design, Int. J. Comput. Fluid Dyn., 10, 3, 199-211, (1998) · Zbl 0929.76100
[34] Müller, J.-D.; Cusdin, P., On the performance of discrete adjoint CFD codes using automatic differentiation, Int. J. Numer. Methods Fluids, 47, 8-9, 939-945, (2005) · Zbl 1134.76431
[35] Naumovich, A.; Forster, M.; Dwight, R. P., Algebraic multigrid within defect correction for the linearized Euler equations, Numer. Linear Algebra Appl., 17, 307-324, (2010) · Zbl 1240.76016
[36] Nielsen, E. J.; James, L. B.; Park, M. A.; Darmofal, D. L., An implicit, exact dual adjoint solution method for turbulent flows on unstructured grids, Comput. Fluids, 33, 1131-1155, (2004) · Zbl 1103.76346
[37] Othmer, C., A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows, Int. J. Numer. Methods Fluids, 58, 8, 861-877, (2008) · Zbl 1152.76025
[38] C. Othmer, T. Kaminski, R. Giering, Computation of topological sensitivities in fluid dynamics: cost function versatility, in: ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006.
[39] Peter, J. E.V.; Dwight, R. P., Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches, Comput. Fluids, 39, 3, 373-391, (2010) · Zbl 1242.76301
[40] Pironneau, O., On optimum design in fluid mechanics, J. Fluid Mech., 64, 1, 97-110, (1974) · Zbl 0281.76020
[41] Rhie, C. M.; Chow, W. L., A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J., 21, 1525-1532, (1983) · Zbl 0528.76044
[42] S. Schmidt, C. Ilic, N. Gauger, V. Schulz, Shape gradients and their smoothness for practical aerodynamic design optimization, Preprint-Number SPP1253-10-03, 2008, URL: <http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints>.
[43] O. Soto, R. Löhner, On the computation of flow sensitivities from boundary integrals, AIAA-2004-0112, 2004.
[44] Soto, O.; Löhner, R.; Yang, C., An adjoint-based design methodology for CFD problems, Int. J. Numer. Methods Heat Fluid Flow, 14, 6, 734-759, (2004) · Zbl 1078.76057
[45] Stück, A.; Kröger, J.; Rung, T., Adjoint-based hull design for wake optimisation, Ship Technol. Res., 58, 1, 34-44, (2011)
[46] Stück, A.; Rung, T., Adjoint RANS with filtered shape derivatives for hydrodynamic optimisation, Comput. Fluids, 47, 22-32, (2011) · Zbl 1271.76084
[47] A. Stück, T. Rung, Filtered gradients for adjoint-based shape optimisation, AIAA-2011-3072, 2011.
[48] van Leer, B., Towards the ultimate conservative difference scheme. V - a second-order sequel to godunov’s method, J. Comput. Phys., 32, 101-136, (1979) · Zbl 1364.65223
[49] Zymaris, A. S.; Papadimitriou, D. I.; Giannakoglou, K. C.; Othmer, C., Continuous adjoint approach to the spalart – allmaras turbulence model for incompressible flows, Comput. Fluids, 38, 8, 1528-1538, (2009) · Zbl 1242.76064
[50] Zymaris, A. S.; Papadimitriou, D. I.; Giannakoglou, K. C.; Othmer, C., Adjoint wall functions: a new concept for use in aerodynamic shape optimization, J. Comput. Phys., 229, 13, 5228-5245, (2010) · Zbl 1346.76059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.