×

zbMATH — the first resource for mathematics

Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS). (English) Zbl 1349.76394
Summary: This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
Software:
C-AMS; PETSc
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Berkowitz, B., Characterizing flow and transport in fractured geological media: a review, Adv. Water Resour., 25, 861-884, (2002)
[2] Lee, S. H.; Jensen, C. L.; Lough, M. F., Efficient finite-difference model for flow in a reservoir with multiple length-scale fractures, SPE J., 3, 268-275, (2000)
[3] Pluimers, S., Hierarchical fracture modeling, (2015), Delft University of Technology The Netherlands, Msc thesis
[4] Li, L.; Lee, S. H., Efficient field-scale simulation of black oil in naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reserv. Eval. Eng., 11, 750-758, (2008)
[5] Hajibeygi, H.; Karvounis, D.; Jenny, P., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 8729-8743, (2011) · Zbl 1370.76095
[6] Moinfar, A.; Narr, W.; Hui, M.-H.; Mallison, B. T.; Lee, S. H., Comparison of discrete-fracture and dual-permeability models for multiphase flow in naturally fractured reservoirs, (SPE Reservoir Simulation Symposium, 21-23 February, The Woodlands, Texas, USA, (2011)), 1-17
[7] Karimi-Fard, M.; Durlofsky, L.; Aziz, K., An efficient discrete-fracture model applicable for general-purpose reservoir simulators, SPE J., 9, 227-236, (2004)
[8] Matthäi, S. K.; Mezentsev, A. A.; Belayneh, M., Finite element node-centered finite-volume two-phase-flow experiments with fractured rock represented by unstructured hybrid-element meshes, SPE Reserv. Eval. Eng., 10, 740-756, (2007)
[9] Reichenberger, V.; Jakobs, H.; Bastian, P.; Helmig, R., A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Adv. Water Resour., 29, 1020-1036, (2006)
[10] Moinfar, A.; Varavei, A.; Sepehrnoori, K.; Johns, R. T., Development of an efficient embedded discrete fracture model for 3d compositional reservoir simulation in fractured reservoirs, SPE J., 19, 289-303, (2014)
[11] Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A.H.; Pal, M., Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model, J. Comput. Phys., 284, 462-489, (2015) · Zbl 1351.74073
[12] Geiger-Boschung, S.; Matthäi, S. K.; Niessner, J.; Helmig, R., Black-oil simulations for three-component, three-phase flow in fractured porous media, SPE J., 14, 338-354, (2009)
[13] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189, (1997) · Zbl 0880.73065
[14] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67, (2003) · Zbl 1047.76538
[15] Kippe, V.; Aarnes, J. E.; Lie, K.-A., A comparison of multiscale methods for elliptic problems in porous media flow, Comput. Geosci., 12, 377-398, (2008) · Zbl 1259.76047
[16] Lee, S. H.; Wolfsteiner, C.; Tchelepi, H. A., Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity, Comput. Geosci., 12, 351-366, (2008) · Zbl 1259.76049
[17] Hajibeygi, H.; Tchelepi, H. A., Compositional multiscale finite-volume formulation, SPE J., 19, 316-326, (2014)
[18] Cusini, M.; Lukyanov, A.; Natvig, J.; Hajibeygi, H., Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media, J. Comput. Phys., 299, 472-486, (2015) · Zbl 1351.76055
[19] Cusini, M.; van Kruijsdijk, C.; Hajibeygi, H., Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media, J. Comput. Phys., 314, 60-79, (2016) · Zbl 1349.76813
[20] Jenny, P.; Lunati, I., Modeling complex wells with the multi-scale finite volume method, J. Comput. Phys., 228, 687-702, (2009) · Zbl 1155.76040
[21] Wolfsteiner, C.; Lee, S. H.; Tchelepi, H. A., Well modeling in the multiscale finite volume method for subsurface flow simulation, Multiscale Model. Simul., 5, 900-917, (2006) · Zbl 1205.76175
[22] Zhou, H.; Lee, S.; Tchelepi, H., Multiscale finite-volume formulation for saturation equations, SPE J., 17, 198-211, (2011)
[23] Efendiev, Y.; Galvis, J.; Wu, X., Multiscale finite element methods for high-contrast problems using local spectral basis functions, J. Comput. Phys., 230, 937-955, (2011) · Zbl 1391.76321
[24] Chung, E. T.; Efendiev, Y.; Li, G.; Vasilyeva, M., Generalized multiscale finite element methods for problems in perforated heterogeneous domains, Appl. Anal., 1-26, (2015)
[25] Cortinovis, D.; Jenny, P., Iterative Galerkin-enriched multiscale finite-volume method, J. Comput. Phys., 277, 248-267, (2014) · Zbl 1349.65576
[26] Hesse, M. A.; Mallison, B. T.; Tchelepi, H. A., Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations, Multiscale Model. Simul., 7, 934-962, (2008) · Zbl 1277.76104
[27] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Monotone multiscale finite volume method, Comput. Geosci., 1-16, (2015)
[28] Moyner, O.; Lie, K., A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, J. Comput. Phys., 304, 46-71, (2016) · Zbl 1349.76824
[29] Natvig, J.; Skaflestad, B.; Bratvedt, F.; Bratvedt, K.; Lie, K.-A.; Laptev, V.; Khataniar, S., Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs, SPE J., 16, 880-888, (2011)
[30] Sandve, T.; Keilegavlen, E.; Nordbotten, J., Physics-based preconditioners for flow in fractured porous media, Water Resour. Res., 50, 2, 1357-1373, (2014)
[31] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Algebraic multiscale linear solver for heterogeneous elliptic problems, J. Comput. Phys., 259, 284-303, (2014) · Zbl 1349.76835
[32] Ţene, M.; Wang, Y.; Hajibeygi, H., Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media, J. Comput. Phys., 300, 679-694, (2015) · Zbl 1349.76272
[33] Stüben, K., SAMG User’s manual, (2010), Fraunhofer Institute SCAI
[34] Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation, SPE J., 18, 3, 183-194, (1978)
[35] Karvounis, D.; Jenny, P., Adaptive hierarchical fracture model for enhanced geothermal systems, Multiscale Model. Simul., 14, 1, 207-231, (2016) · Zbl 1381.86005
[36] Hajibeygi, H.; Jenny, P., Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media, J. Comput. Phys., 228, 5129-5147, (2009) · Zbl 1280.76019
[37] Hajibeygi, H.; Bonfigli, G.; Hesse, M.; Jenny, P., Iterative multiscale finite-volume method, J. Comput. Phys., 227, 8604-8621, (2008) · Zbl 1151.65091
[38] Zhou, H.; Tchelepi, H. A., Operator based multiscale method for compressible flow, SPE J., 13, 267-273, (2008)
[39] Bonfigli, G.; Jenny, P., An efficient multi-scale Poisson solver for the incompressible Navier-Stokes equations with immersed boundaries, J. Comput. Phys., 228, 4568-4587, (2009) · Zbl 1165.76030
[40] Hajibeygi, H.; Jenny, P., Adaptive iterative multiscale finite volume method, J. Comput. Phys., 230, 628-643, (2011) · Zbl 1283.76041
[41] Lee, S.; Zhou, H.; Tchelepi, H., Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations, J. Comput. Phys., 228, 24, 9036-9058, (2009) · Zbl 1388.76179
[42] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, J. Comput. Phys., 217, 627-641, (2006) · Zbl 1160.76373
[43] Zhou, H.; Tchelepi, H. A., Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models, SPE J., 17, 2, 523-539, (2012)
[44] J. Wallis, H.A. Tchelepi, Apparatus, method and system for improved reservoir simulation using an algebraic cascading class linear solver, US Patent 7,684,967 (March 2010).
[45] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM Philadelphia, USA · Zbl 1002.65042
[46] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., Petsc users manual, (2015), Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.6
[47] Hajibeygi, H.; Lee, S. H.; Lunati, I., Accurate and efficient simulation of multiphase flow in a heterogeneous reservoir by using error estimate and control in the multiscale finite-volume framework, SPE J., 17, 4, 1071-1083, (2012)
[48] Nordbotten, J. M.; Bjostad, P. E., On the relationship between the multiscale finite volume method and domain decomposition preconditioners, Comput. Geosci., 13, 367-376, (2008) · Zbl 1155.76042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.