×

zbMATH — the first resource for mathematics

A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. (English) Zbl 1349.76851
J. Comput. Phys. 259, 331-357 (2014); corrigendum ibid. 288, 196–197 (2015).
Summary: We model liquid-gas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of R. Saurel et al. [J. Comput. Phys. 228, No. 5, 1678–1712 (2009; Zbl 1409.76105)]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxation terms to model heat and mass transfer and hence liquid-vapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquid-vapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.

MSC:
76T10 Liquid-gas two-phase flows, bubbly flows
76M12 Finite volume methods applied to problems in fluid mechanics
Software:
HLLE; HLLC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brennen, C. E., Fundamentals of multiphase flow, (2005), Cambridge University Press · Zbl 1127.76001
[2] Franc, J.-P.; Michel, J.-M., Fundamentals of cavitation, (2005), Springer Science+Business Media Dordrecht
[3] Carey, P. V., Liquid-vapor phase-change phenomena, (1992), Taylor and Francis
[4] Liu, T. G.; Khoo, B. C.; Xie, W. F., Isentropic one-fluid modeling of unsteady cavitating flow, J. Comput. Phys., 201, 80-108, (2004) · Zbl 1153.76435
[5] Xie, W. F.; Liu, T. G.; Khoo, B. C., Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified Schmidt model, Comput. Fluids, 35, 1177-1192, (2006) · Zbl 1177.76437
[6] Edwards, J. R.; Franklin, R. K.; Liou, M.-S., Low-diffusion flux-splitting methods for real fluid flows with phase transitions, AIAA J., 38, 1624-1633, (2000)
[7] Jamet, D.; Lebaigue, O.; Coutris, N.; Delhaye, J. M., The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comput. Phys., 169, 624-651, (2001) · Zbl 1047.76098
[8] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech., 607, 313-350, (2008) · Zbl 1147.76060
[9] Saurel, R.; Petitpas, F.; Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixture, J. Comput. Phys., 228, 1678-1712, (2009) · Zbl 1409.76105
[10] Saurel, R.; Le Métayer, O., A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431, 239-271, (2001) · Zbl 1039.76069
[11] Utturkar, Y.; Wu, J.; Wang, G.; Shyy, W., Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion, Prog. Aerosp. Sci., 41, 558-608, (2005)
[12] Barberon, T.; Helluy, P., Finite volume simulation of cavitating flows, Comput. Fluids, 34, 832-858, (2005) · Zbl 1134.76392
[13] Müller, S.; Bachmann, M.; Kröninger, D.; Kurz, T.; Helluy, P., Comparison and validation of compressible flow simulations of laser-induced cavitation bubbles, Comput. Fluids, 38, 1850-1862, (2009) · Zbl 1177.76240
[14] Faccanoni, G.; Kokh, S.; Allaire, G., Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, Modél. Math. Anal. Numér., 46, 1029-1054, (2012) · Zbl 1267.76110
[15] Shyue, K.-M., An adaptive moving-mesh relaxation scheme for compressible two-phase barotropic flow with cavitation, (Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011, (2011), ASME), AJK2011-AJK04009
[16] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 861-889, (1986) · Zbl 0609.76114
[17] Zein, A.; Hantke, M.; Warnecke, G., Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comput. Phys., 229, 2964-2998, (2010) · Zbl 1307.76079
[18] Kapila, A.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024, (2001) · Zbl 1184.76268
[19] LeVeque, R. J., Finite volume methods for hyperbolic problems, (2002), Cambridge University Press · Zbl 1010.65040
[20] LeVeque, R. J.; Berger, M. J., (2011), {\scclawpack} software version 4.5
[21] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467, (1999) · Zbl 0937.76053
[22] Petitpas, F.; Massoni, J.; Saurel, R.; Lapebie, E.; Munier, L., Diffuse interface model for high speed cavitating underwater systems, Int. J. Multiph. Flow, 35, 747-759, (2009)
[23] Le Martelot, S.; Nkonga, B.; Saurel, R., Liquid and liquid-gas flows at all speeds: reference solutions and numerical schemes, (2012), INRIA Research Report N. 7935
[24] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664-698, (2005) · Zbl 1061.76083
[25] Wood, A. B., A textbook of sound, (1930), G. Bell and Sons Ltd. London · JFM 56.0717.07
[26] Petitpas, F.; Franquet, E.; Saurel, R.; Le Métayer, O., A relaxation-projection method for compressible flows. part II: artificial heat exchanges for multiphase shocks, J. Comput. Phys., 225, 2214-2248, (2007) · Zbl 1183.76831
[27] Callen, H. B., Thermodynamics and an introduction to thermostatistics, (1985), John Wiley & Sons · Zbl 0989.80500
[28] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577-616, (2002) · Zbl 1169.76407
[29] Andrianov, N.; Warnecke, G., The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 195, 434-464, (2004) · Zbl 1115.76414
[30] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., 212, 490-526, (2006) · Zbl 1161.76531
[31] Tokareva, S. A.; Toro, E. F., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 229, 3573-3604, (2010) · Zbl 1391.76440
[32] Jinbo, Y.; Ogasawara, T.; Takahira, H., Numerical investigation of nonspherical bubble collapse near boundaries by the improved ghost fluid method, (Ohl, C.-D.; Klaseboer, E.; Ohl, S. W.; Gong, S. W.; Khoo, B. C., Proceedings of Eighth Int. Symp. on Cavitation (CAV 2012), (2012), Research Publishing Services)
[33] Flåtten, T.; Lund, H., Relaxation two-phase models and the subcharacteristic condition, Math. Models Methods Appl. Sci., 21, 2379-2407, (2011) · Zbl 1368.76070
[34] Lund, H., A hierarchy of relaxation models for two-phase flows, SIAM J. Appl. Math., 72, 1713-1741, (2012) · Zbl 1260.76036
[35] Liu, T. P., Hyperbolic conservation laws with relaxation, Commun. Math. Phys., 108, 153-175, (1987) · Zbl 0633.35049
[36] Le Métayer, O.; Massoni, J.; Saurel, R., Elaborating equations of state of a liquid and its vapor for two-phase flow models, Int. J. Therm. Sci., 43, 265-276, (2004)
[37] Le Métayer, O.; Massoni, J.; Saurel, R., Modeling evaporation fronts with reactive Riemann solvers, J. Comput. Phys., 205, 567-610, (2005) · Zbl 1088.76051
[38] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (1997), Springer-Verlag Berlin, Heidelberg · Zbl 0888.76001
[39] LeVeque, R. J., Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys., 131, 327-353, (1997) · Zbl 0872.76075
[40] Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 47, 271-306, (1959) · Zbl 0171.46204
[41] Godlewski, E.; Raviart, P.-A., Numerical approximation of hyperbolic systems of conservation laws, (1996), Springer-Verlag New York · Zbl 1063.65080
[42] Bale, D.; LeVeque, R. J.; Mitran, S.; Rossmanith, J. A., A wave-propagation method for conservation laws and balance laws with spatially varying flux functions, SIAM J. Sci. Comput., 24, 955-978, (2002) · Zbl 1034.65068
[43] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61, (1983) · Zbl 0565.65051
[44] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL Riemann solver, Shock Waves, 4, 25-34, (1994) · Zbl 0811.76053
[45] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372, (1981) · Zbl 0474.65066
[46] Maso, G. D.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548, (1995) · Zbl 0853.35068
[47] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321, (2006) · Zbl 1130.65089
[48] Castro, M. J.; LeFloch, P.; Muñoz-Ruiz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 8107-8129, (2008) · Zbl 1176.76084
[49] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, J. Comput. Phys., 229, 2759-2763, (2010) · Zbl 1188.65134
[50] Davis, S. F., Simplified second-order Godunov-type methods, SIAM J. Sci. Stat. Comput., 9, 445-473, (1988) · Zbl 0645.65050
[51] M. Pelanti, K.-M. Shyue, A mixture-energy-consistent numerical approximation of a two-phase flow model for fluids with interfaces and cavitation, in: Proceedings of the Fourteenth International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Padua, Italy, June 25-29, 2012, AIMS, submitted for publication.
[52] Shyue, K.-M., A high-resolution mapped grid algorithm for compressible multiphase flow problems, J. Comput. Phys., 229, 8780-8801, (2010) · Zbl 1282.76152
[53] Caro, F.; Coquel, F.; Jamet, D.; Kokh, S., A simple finite-volume method for compressible isothermal two-phase flows simulation, Int. J. Finite Vol., 6, 1, (2006)
[54] Saurel, R.; Favrie, N.; Petitpas, F.; Lallemand, M.-H.; Gavrilyuk, S. L., Modelling dynamic and irreversible powder compaction, J. Fluid Mech., 664, 348-396, (2010) · Zbl 1221.76202
[55] Guillard, H.; Viozat, C., On the behavior of upwind schemes in the low Mach number limit, Comput. Fluids, 28, 63-86, (1999) · Zbl 0963.76062
[56] Guillard, H.; Murrone, A., On the behavior of upwind schemes in the low Mach number limit: II. Godunov-type schemes, Comput. Fluids, 338, 655-675, (2004) · Zbl 1049.76040
[57] Bilanceri, M.; Beux, F.; Salvetti, M. V., An implicit low-diffusive HLL scheme with complete time linearization: application to cavitating barotropic flows, Comput. Fluids, 39, 1990-2006, (2010) · Zbl 1245.76046
[58] Braconnier, B.; Hu, J.-J.; Niu, Y.-Y.; Nkonga, B.; Shyue, K.-M., Numerical simulations of low Mach compressible two-phase flows: preliminary assessment of some basic solution techniques, ESAIM Proc., 28, 117-134, (2009) · Zbl 1176.76092
[59] R. Abgrall, H. Kumar, Numerical approximation of a compressible multiphase system, Commun. Comput. Phys., http://dx.doi.org/10.4208/cicp.110313.230913a, in press. · Zbl 1373.76154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.