zbMATH — the first resource for mathematics

Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations. (English) Zbl 1349.76881
Summary: A numerical technique that uses dynamic adaptive chemistry (DAC) with operator splitting schemes to solve the equations governing reactive flows is developed and demonstrated. Strang-based splitting schemes are used to separate the governing equations into transport fractional substeps and chemical reaction fractional substeps. The DAC method expedites the numerical integration of reaction fractional substeps by using locally valid skeletal mechanisms that are obtained using the directed relation graph (DRG) reduction method to eliminate unimportant species and reactions from the full mechanism. Second-order temporal accuracy of the Strang-based splitting schemes with DAC is demonstrated on one-dimensional, unsteady, freely-propagating, premixed methane/air laminar flames with detailed chemical kinetics and realistic transport. The use of DAC dramatically reduces the CPU time required to perform the simulation, and there is minimal impact on solution accuracy. It is shown that with DAC the starting species and resulting skeletal mechanisms strongly depend on the local composition in the flames. In addition, the number of retained species may be significant only near the flame front region where chemical reactions are significant. For the one-dimensional methane/air flame considered, speed-up factors of three and five are achieved over the entire simulation for GRI-Mech 3.0 and USC-Mech II, respectively. Greater speed-up factors are expected for larger chemical kinetics mechanisms.

76V05 Reaction effects in flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI
[1] Law, C. K., Combustion at a crossroads: status and prospects, Proc. Combust. Inst., 31, 1-29, (2007)
[2] Marchuk, G. I., On the theory of the splitting-up method, (Proceedings of the 2nd Symposium on Numerical Solution of Partial Differential Equations, SVNSPADE, (1970))
[3] Yanenko, N. N., The method of fractional steps, (1971), Springer-Verlag New York, (Translation Ed. M. Holt) · Zbl 0209.47103
[4] Knio, O. M.; Najm, H. N.; Wyckoff, P. S., A semi-implicit numerical scheme for reacting flow: II. stiff, operator-split formulation, J. Comput. Phys., 154, 428-467, (1999) · Zbl 0958.76061
[5] Sportisse, B., An analysis of operator splitting techniques in the stiff case, J. Comput. Phys., 161, 140-168, (2000) · Zbl 0953.65062
[6] Schwer, D. A.; Lu, P.; Green, W. H.; Semiao, V., A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry, Combust. Theory Model., 7, 383-399, (2003)
[7] Ropp, D. L.; Shadid, J. N.; Ober, C. C., Studies of the accuracy of time integration methods for reaction-diffusion equations, J. Comput. Phys., 194, 544-574, (2004) · Zbl 1039.65069
[8] Singer, M. A.; Pope, S. B.; Najm, H. N., Operator-splitting with ISAT to model reacting flow with detailed chemistry, Combust. Theory Model., 10, 199-217, (2006) · Zbl 1121.80333
[9] Singer, M. A.; Green, W. H., Using adaptive proper orthogonal decomposition to solve the reaction-diffusion equation, Appl. Numer. Math., 59, 272-279, (2009) · Zbl 1157.80003
[10] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517, (1968) · Zbl 0184.38503
[11] Ren, Z.; Pope, S. B., Second-order splitting schemes for a class of reactive systems, J. Comput. Phys., 227, 8165-8176, (2008) · Zbl 1147.65056
[12] Duarte, M.; Massot, M.; Descombes, S.; Tenaud, C.; Dumont, T.; Louvet, V.; Laurent, F., New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and dedicated high order implicit/explicit time integrators, SIAM J. Sci. Comput., 34, A76-A104, (2012) · Zbl 1243.65107
[13] Lu, T.; Law, C. K., A directed relation graph method for mechanism reduction, Proc. Combust. Inst., 30, 1333-1341, (2005)
[14] Lu, T.; Law, C. K., On the applicability of directed relation graphs to the reduction of reaction mechanisms, Combust. Flame, 146, 472-483, (2006)
[15] Pepiot-Desjardins, P.; Pitsch, H., An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame, 154, 67-81, (2008) · Zbl 1158.80325
[16] Niemeyer, K. E.; Sung, C.-J.; Raju, M. P., Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis, Combust. Flame, 157, 1760-1770, (2010)
[17] Sun, W.; Chen, Z.; Gou, X.; Ju, Y., A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame, 157, 1298-1307, (2010)
[18] Tosatto, L.; Bennett, B.; Smooke, M., A transport-flux-based directed relation graph method for the spatially inhomogeneous instantaneous reduction of chemical kinetic mechanisms, Combust. Flame, 158, 820-835, (2011)
[19] Nagy, T.; Turányi, T., Reduction of very large reaction mechanisms using methods based on simulation error minimization, Combust. Flame, 156, 417-428, (2009)
[20] Bodenstein, M.; Lind, S. C., Geschwindigkeit der bildung des bromwasserstoffs aus seinen elementen, Z. Phys. Chem. (Leipz.), 57, 168-175, (1906)
[21] Smooke, M. D., Reduced kinetic mechanisms and asymptotic approximations for methane-air flames, (1991), Springer Berlin
[22] Keck, J. C.; Gillespie, D., Rate-controlled partial-equilibrium method for treating reacting gas mixtures, Combust. Flame, 17, 237-241, (1971)
[23] Keck, J. C., Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems, Prog. Energy Combust. Sci., 16, 125-154, (1990)
[24] Lam, S.; Goussis, D., The CSP method for simplifying kinetics, Int. J. Chem. Kinet., 26, 461-486, (1994)
[25] Maas, U.; Pope, S. B., Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame, 88, 239-264, (1992)
[26] Pope, S. B.; Maas, U., Simplifying chemical kinetics: trajectory-generated low-dimensional manifolds, (1993), Cornell University, FDA 93-11
[27] Ren, Z.; Pope, S. B., Species reconstruction using pre-image curves, Proc. Combust. Inst., 30, 1293-1300, (2005)
[28] Ren, Z.; Pope, S. B.; Vladimirsky, A.; Guckenheimer, J. M., The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics, J. Chem. Phys., 124, 114111, (2006)
[29] Gorban, A. N.; Karlin, I. V., Method of invariant manifold for chemical kinetics, Chem. Eng. Sci., 58, 4751-4768, (2003)
[30] Al-Khateeb, A. N.; Powers, J. M.; Paolucci, S.; Sommese, A. J.; Diller, J. A.; Hauenstein, J. D.; Mengers, J. D., One-dimensional slow invariant manifolds for spatially homogenous reactive systems, J. Chem. Phys., 131, 024118, (2009)
[31] Chen, J.-Y.; Kollmann, W.; Dibble, R., Pdf modeling of turbulent nonpremixed methane jet flames, Combust. Sci. Technol., 64, 315-346, (1989)
[32] Turanyi, T., Parameterization of reaction mechanisms using orthonormal polynomials, Comput. Chem., 18, 45-54, (1994)
[33] Christo, F. C.; Masri, A. R.; Nebot, E. M.; Pope, S. B., An integrated PDF/neural network approach for simulating turbulent reacting systems, (Symposium (International) on Combustion, (1996), Elsevier)
[34] Pope, S. B., Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model., 1, 41-63, (1997) · Zbl 1046.80500
[35] Lu, L.; Pope, S. B., An improved algorithm for in situ adaptive tabulation, J. Comput. Phys., 228, 361-386, (2009) · Zbl 1161.65015
[36] Tonse, S. R.; Moriarty, N. W.; Brown, N. J.; Frenklach, M., PRISM: piecewise reusable implementation of solution mapping. an economical strategy for chemical kinetics, Isr. J. Chem., 39, (1998)
[37] Goldin, G. M.; Ren, Z.; Zahirovic, S., A cell agglomeration algorithm for accelerating detailed chemistry in CFD, Combust. Theory Model., 13, 721-739, (2009) · Zbl 1176.80074
[38] Aceves, S. M.; Flowers, D. L.; Westbrook, C. K.; Smith, J.; Pitz, W.; Dibble, R.; Christensen, M.; Johansson, B., A multi-zone model for prediction of HCCI combustion and emissions, SAE Transact., 109, 431-441, (2000)
[39] Babajimopoulos, A.; Assanis, D.; Flowers, D.; Aceves, S.; Hessel, R., A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines, Int. J. Engine Res., 6, 497-512, (2005)
[40] Liang, L.; Stevens, J. G.; Farrell, J. T., A dynamic adaptive chemistry scheme for reactive flow computations, Proc. Combust. Inst., 32, 527-534, (2009)
[41] Liang, L.; Stevens, J. G.; Raman, S.; Farrell, J. T., The use of dynamic adaptive chemistry in combustion simulation of gasoline surrogate fuels, Combust. Flame, 156, 1493-1502, (2009)
[42] Shi, Y.; Liang, L.; Ge, H.-W.; Reitz, R. D., Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes, Combust. Theory Model., 14, 69-89, (2010) · Zbl 1187.80038
[43] Contino, F.; Jeanmart, H.; Lucchini, T.; D’Errico, G., Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: an effective method for solving combustion in engine simulations, Proc. Combust. Inst., 33, 3057-3064, (2011)
[44] Yang, H.; Ren, Z.; Lu, T.; Goldin, G. M., Dynamic adaptive chemistry for turbulent flame simulations, Combust. Theory Model., 17, 167-183, (2013) · Zbl 1263.80023
[45] Ren, Z.; Liu, Y.; Lu, T.; Lu, L.; Oluwole, O. O.; Goldin, G. M., The use of dynamic adaptive chemistry and tabulation in reactive flow simulations, Combust. Flame, 161, 127-137, (2014)
[46] Caracotsios, M.; Stewart, W. E., Sensitivity analysis of initial value problems with mixed ODEs and algebraic equations, Comput. Chem. Eng., 9, 359-365, (1985)
[47] Smith, G.; Golden, D.; Frenklach, M.; Moriarty, N.; Eiteneer, B.; Goldenberg, M.; Bowman, C.; Hanson, R.; Song, S.; Gardiner, W., GRI-mech—an optimized detailed chemical reaction mechanism for methane combustion, (1999), Gas Research Institute, Technical report
[48] Wang, H.; You, X.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F.; Law, C. K., USC mech version II. high-temperature combustion reaction model of H_{2}/CO/C_{1}-C_{4} compounds, (May 2007)
[49] Anderson, E., LAPACK users’ guide, (1999), SIAM · Zbl 0755.65028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.