zbMATH — the first resource for mathematics

Predator-prey model with diffusion and indirect prey-taxis. (English) Zbl 1349.92133

92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
Full Text: DOI
[1] 1. B. Aiseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Anal.9 (2008) 2086-2105. genRefLink(16, ’S0218202516400108BIB001’, ’10.1016%252Fj.nonrwa.2007.06.017’); genRefLink(128, ’S0218202516400108BIB001’, ’000259023900017’);
[2] 2. N. D. Alikakos, Lp bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations4 (1979) 827-868. genRefLink(16, ’S0218202516400108BIB002’, ’10.1080%252F03605307908820113’);
[3] 3. N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci.25 (2015) 1663-1763, Doi: [10.1142/S021820251550044X] . [Abstract] genRefLink(128, ’S0218202516400108BIB003’, ’000355690000002’); · Zbl 1326.35397
[4] 4. A. Chakrabortya, M. Singh, M. D. Lucy and P. Ridland, Predator-prey model with prey-taxis and diffusion, Math. Comput. Model.46 (2007) 482-498. genRefLink(16, ’S0218202516400108BIB004’, ’10.1016%252Fj.mcm.2006.10.010’); genRefLink(128, ’S0218202516400108BIB004’, ’000247784100015’); · Zbl 1132.35395
[5] 5. M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Med.1 (2006) 399-439. genRefLink(16, ’S0218202516400108BIB005’, ’10.3934%252Fnhm.2006.1.399’); genRefLink(128, ’S0218202516400108BIB005’, ’000244503600003’);
[6] 6. J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems (Cambridge Univ. Press, 2000). genRefLink(16, ’S0218202516400108BIB006’, ’10.1017%252FCBO9780511526404’); · Zbl 0954.35002
[7] 7. M. Connover, Predator-Prey Dynamics: The Role of Olfaction (CRC Press, 2007). genRefLink(16, ’S0218202516400108BIB007’, ’10.1201%252F9781420009125’);
[8] 8. C. Cosner, D. L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol.56 (1999) 65-75. genRefLink(16, ’S0218202516400108BIB008’, ’10.1006%252Ftpbi.1999.1414’); genRefLink(128, ’S0218202516400108BIB008’, ’000082101200005’); · Zbl 0928.92031
[9] 9. M. C. Ferrari, B. D. Wisenden and D. P. Chivers, Chemical ecology of predator-prey interactions in aquatic ecosystems: A review and prospectus, Canad. J. Zool.33 (2010) 698-724. genRefLink(16, ’S0218202516400108BIB009’, ’10.1139%252FZ10-029’); genRefLink(128, ’S0218202516400108BIB009’, ’000281442100006’);
[10] 10. A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl.272 (2002) 138-163. genRefLink(16, ’S0218202516400108BIB010’, ’10.1016%252FS0022-247X%252802%252900147-6’); genRefLink(128, ’S0218202516400108BIB010’, ’000178468500010’);
[11] 11. Z. M. Gliwicz and D. Wrzosek, Predation mediated coexistence of large and small bodied daphnia at different food levels, Amer. Nat.172 (2008) 358-374. genRefLink(16, ’S0218202516400108BIB011’, ’10.1086%252F589890’); genRefLink(128, ’S0218202516400108BIB011’, ’000258529700008’);
[12] 12. D. Grunbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, Amer. Nat.151 (1998) 97-115. genRefLink(16, ’S0218202516400108BIB012’, ’10.1086%252F286105’); genRefLink(128, ’S0218202516400108BIB012’, ’000071750400001’);
[13] 13. M. R. Heithaus and J. J. Vando, Predator-prey interactions, in Biology of Sharks and Their Relatives, eds. J. C. Carrier and J. A. Musick, 2nd edn. (CRC Press, 2012), pp. 505-547.
[14] 14. D. Henry, Geometric Theory of Semilinear Parabolic Equations (Springer-Verlag, 1981). genRefLink(16, ’S0218202516400108BIB014’, ’10.1007%252FBFb0089647’);
[15] 15. T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol.58 (2009) 183-217. genRefLink(16, ’S0218202516400108BIB015’, ’10.1007%252Fs00285-008-0201-3’); genRefLink(128, ’S0218202516400108BIB015’, ’000259960000009’);
[16] 16. T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci.23 (2013) 165-198. [Abstract] genRefLink(128, ’S0218202516400108BIB016’, ’000316826000005’); · Zbl 1263.35204
[17] 17. C. D. Hoefler, M. Taylor and E. M. Jakob, Chemosensory response to prey in Phidippus audax and Pardosa milvina, J. Arachnol.30 (2002) 155-158. genRefLink(16, ’S0218202516400108BIB017’, ’10.1636%252F0161-8202%25282002%2529030%255B0155%253ACRTPIP%255D2.0.CO%253B2’); genRefLink(128, ’S0218202516400108BIB017’, ’000176399900018’);
[18] 18. A. Jüngel, Diffusive and nondiffusive population models, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, eds. G. Naldi, L. Pareschi and G. Toscani (Birkhäuser, 2010). genRefLink(16, ’S0218202516400108BIB018’, ’10.1007%252F978-0-8176-4946-3_15’); · Zbl 1398.92205
[19] 19. P. Kareiva and G. Odell, Swarms of predators exhibit ”prey-taxis” if individual predators use area-restricted search, Amer. Nat.130 (1987) 233-270. genRefLink(16, ’S0218202516400108BIB019’, ’10.1086%252F284707’); genRefLink(128, ’S0218202516400108BIB019’, ’A1987J765300005’);
[20] 20. O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 (Amer. Math. Soc., 1968).
[21] 21. J. M. Lee, T. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dynam.3 (2009) 551-573. genRefLink(16, ’S0218202516400108BIB021’, ’10.1080%252F17513750802716112’); · Zbl 1315.92064
[22] 22. A. Leung, Limiting behavior for a prey-predator model with diffusion and crowding effects, J. Math. Biol.6 (1978) 87-93. genRefLink(16, ’S0218202516400108BIB022’, ’10.1007%252FBF02478520’); genRefLink(128, ’S0218202516400108BIB022’, ’A1978FH21500008’);
[23] 23. O. M. Lonnstedt, M. I. McCormick and D. P. Chivers, Well-informed foraging: Damage-released chemical cues of injured prey signal quality and size to predators, Oecologia168 (2012) 651-658, Doi: [10.1007/s00442-011-2116-8] . genRefLink(16, ’S0218202516400108BIB023’, ’10.1007%252Fs00442-011-2116-8’); genRefLink(128, ’S0218202516400108BIB023’, ’000301706800005’);
[24] 24. M. Małogrosz, Well-posedness and asymptotic behavior for a multidimensional model of morphogen transport, J. Evol. Equations12 (2012) 353-366. genRefLink(16, ’S0218202516400108BIB024’, ’10.1007%252Fs00028-012-0135-5’); genRefLink(128, ’S0218202516400108BIB024’, ’000304403200005’);
[25] 25. J. D. Murray, Mathematical Biology (Springer-Verlag, 2002). · Zbl 1006.92001
[26] 26. M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations258 (2015) 1592-1617. genRefLink(16, ’S0218202516400108BIB026’, ’10.1016%252Fj.jde.2014.11.009’); genRefLink(128, ’S0218202516400108BIB026’, ’000348826300006’);
[27] 27. M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interaction, Amer. Nat.97 (1963) 209-223. genRefLink(16, ’S0218202516400108BIB027’, ’10.1086%252F282272’); genRefLink(128, ’S0218202516400108BIB027’, ’A19633783A00008’);
[28] 28. N. Sapoukhina, Y. Tyutyunov and R. Arditi, The role of prey taxis in biological control, Amer. Nat.162 (2003) 61-76. genRefLink(16, ’S0218202516400108BIB028’, ’10.1086%252F375297’); genRefLink(128, ’S0218202516400108BIB028’, ’000183905400005’);
[29] 29. R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc.292 (1985) 531-556. genRefLink(16, ’S0218202516400108BIB029’, ’10.1090%252FS0002-9947-1985-0808736-1’); genRefLink(128, ’S0218202516400108BIB029’, ’A1985AYX6200008’);
[30] 30. F. L. Schuster and M. Levandowsky, Chemosensory responses of Acanthamoeba castellanii: Visual analysis of random movement and responses to chemical signals, J. Eukaryot. Microbiol.43 (1996) 150-158. genRefLink(16, ’S0218202516400108BIB030’, ’10.1111%252Fj.1550-7408.1996.tb04496.x’); genRefLink(128, ’S0218202516400108BIB030’, ’A1996UA10900013’);
[31] 31. L. A. Segel, Analysis of population chemotaxis, in Mathematical Models in Molecular and Cellular Biology, eds. L. A. Segal (Cambridge Univ. Press, 1980).
[32] 32. N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol.79 (1979) 83-99. genRefLink(16, ’S0218202516400108BIB032’, ’10.1016%252F0022-5193%252879%252990258-3’); genRefLink(128, ’S0218202516400108BIB032’, ’A1979HG94200006’);
[33] 33. J. Smoller, Shock Waves and Reaction-Diffusion Systems (Springer, 1994). genRefLink(16, ’S0218202516400108BIB033’, ’10.1007%252F978-1-4612-0873-0’); · Zbl 0807.35002
[34] 34. Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Anal.11 (2010) 2056-2064. genRefLink(16, ’S0218202516400108BIB034’, ’10.1016%252Fj.nonrwa.2009.05.005’); genRefLink(128, ’S0218202516400108BIB034’, ’000278768800078’); · Zbl 1195.35171
[35] 35. Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, to appear in J. Eur. Math. Soc., arXiv: 1608.07622 [arXiv] . · Zbl 1406.35068
[36] 36. X. Wang, W. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci.38 (2015) 431-443, Doi: [10.1002/mma.3079] . genRefLink(16, ’S0218202516400108BIB036’, ’10.1002%252Fmma.3079’); genRefLink(128, ’S0218202516400108BIB036’, ’000348524600004’);
[37] 37. X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem, J. Math. Biol.66 (2013) 1241-1266. genRefLink(16, ’S0218202516400108BIB037’, ’10.1007%252Fs00285-012-0533-x’); genRefLink(128, ’S0218202516400108BIB037’, ’000317627100005’);
[38] 38. S. A. Williams and P.-L. Chow, Nonlinear reaction-diffusion models for interacting populations, J. Math. Anal. Appl.62 (1978) 157-169. genRefLink(16, ’S0218202516400108BIB038’, ’10.1016%252F0022-247X%252878%252990227-5’); genRefLink(128, ’S0218202516400108BIB038’, ’A1978EK01800014’);
[39] 39. T. D. Wyatt, Pheromones and Animal Behavior (Cambridge Univ. Press, 2003). genRefLink(16, ’S0218202516400108BIB039’, ’10.1017%252FCBO9780511615061’);
[40] 40. R. H. Yahner, Wildlife Behavior and Conservation (Springer, 2011).
[41] 41. M. Zuk and G. R. Kolluru, Exploitation of sexual signals by predators and parasitoids, Quart. Rev. Biol.73 (1998) 418-438. genRefLink(16, ’S0218202516400108BIB041’, ’10.1086%252F420412’); genRefLink(128, ’S0218202516400108BIB041’, ’000077410100001’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.