zbMATH — the first resource for mathematics

Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. (English) Zbl 1349.93332

93D20 Asymptotic stability in control theory
93D09 Robust stability
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A21 Canonical forms, reductions, classification
65L80 Numerical methods for differential-algebraic equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A30 Linear ordinary differential equations and systems
Full Text: DOI
[1] A. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control, SIAM, Philadelphia, 2005. · Zbl 1112.93002
[2] S. Bora, M. Karow, C. Mehl, and P. Sharma, Structured eigenvalue backward errors of matrix pencils and polynomials with Hermitian and related structures, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 453–475. · Zbl 1304.15016
[3] R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 875–881. · Zbl 0658.65044
[4] S. L. Campbell, Linearization of DAEs along trajectories, Z. Angew. Math. Phys., 46 (1995), pp. 70–84. · Zbl 0837.34007
[5] M. Dalsmo and A. J. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems, SIAM J. Control Optim., 37 (1998), pp. 54–91. · Zbl 0920.93019
[6] D. Estévez-Schwarz and C. Tischendorf, Structural analysis for electrical circuits and consequences for MNA, Internat. J. Circ. Theor. Appl., 28 (2000), pp. 131–162. · Zbl 1054.94529
[7] M. Freitag and A. Spence, A Newton-based method for the calculation of the distance to instability, Linear Algebra Appl., 435 (2011), pp. 3189–3205. · Zbl 1228.65065
[8] R. W. Freund, The sprim algorithm for structure-preserving order reduction of general rcl circuits, in Model Reduction for Circuit Simulation, M. H. P. Benner and J. ter Maten, eds., Lect. Notes Electr. Eng., Springer, Berlin, 2011, pp. 25–52.
[9] G. Golo, A. J. van der Schaft, P. Breedveld, and B. Maschke, Hamiltonian formulation of bond graphs, in Nonlinear and Hybrid Systems in Automotive Control, A. R. R. Johansson, ed., Springer, Heidelberg, 2003, pp. 351–372.
[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, 1996. · Zbl 0865.65009
[11] N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, and U. von Wagner, Numerical methods for parametric model reduction in the simulation of disc brake squeal, Z. Angew. Math. Mech., doi:10.1002/zamm.201500217.
[12] M. Grant and S. Boyd, Cvx: MATLAB Software for Disciplined Convex Programming, Version 2.0 beta., (2012).
[13] C. He and G. A. Watson, An algorithm for computing the distance to instability, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 101–116. · Zbl 0927.65055
[14] D. Hinrichsen and A. J. Pritchard, Stability radii of linear systems, Systems Control Lett., 7 (1986), pp. 1–10. · Zbl 0631.93064
[15] D. Hinrichsen and A. J. Pritchard, Stability radius for structured perturbations and the algebraic Riccati equation, Systems Control Lett., 8 (1986), pp. 105–113. · Zbl 0626.93054
[16] D. Hinrichsen and A. J. Pritchard, Real and complex stability radii: A survey, in Control of Uncertain Systems, Birkhäuser, Boston, 1990, pp. 119–162. · Zbl 0729.93056
[17] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness, Springer, New York, 2005. · Zbl 1074.93003
[18] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. · Zbl 0576.15001
[19] B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, Oper. Theory Adv. Appl. 223, Birkhäuser/Springer, Basel, 2012.
[20] M. Karow, \(μ\)-values and spectral value sets for linear perturbation classes defined by a scalar product, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 845–865. · Zbl 1234.15002
[21] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations. Analysis and Numerical Solution, EMS Publishing House, Zürich, 2006. · Zbl 1095.34004
[22] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic, Orlando, FL, 1985. · Zbl 0558.15001
[23] D. S. Mackey, N. Mackey, and F. Tisseur, Structured mapping problems for matrices associated with scalar products. Part I: Lie and Jordan algebras, SIAM J. Matrix Anal. Appl., 29 (2008), pp. 1389–1410. · Zbl 1155.15004
[24] N. Martins, Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies, IEEE Trans. Power Systems, 1 (1986), pp. 217–224.
[25] N. Martins and L. Lima, Determination of suitable locations for power system stabilizers and static var compensators for damping electromechanical oscillations in large scale power systems, IEEE Trans. Power Systems, 5 (1990), pp. 1455–1469.
[26] N. Martins, P. C. Pellanda, and J. Rommes, Computation of transfer function dominant zeros with applications to oscillation damping control of large power systems, IEEE Trans. Power Systems, 22 (2007), pp. 1657–1664.
[27] B. M. Maschke, A. J. van der Schaft, and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Non-standard poisson structures and gyrators, J. Franklin Inst., 329 (1992), pp. 923–966. · Zbl 0807.70015
[28] A. J. Mayo and A. C. Antoulas, A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425 (2007), pp. 634–662. · Zbl 1118.93029
[29] R. Ortega, A. J. van der Schaft, Y. Mareels, and B. Maschke, Putting energy back in control, Control Syst. Mag., 21 (2001), pp. 18–33.
[30] R. Ortega, A. J. van der Schaft, B. M. Maschke, and G. Escobar, Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems, Automatica J. IFAC, 38 (2002), pp. 585–596. · Zbl 1009.93063
[31] J. Rommes and N. Martins, Exploiting structure in large-scale electrical circuit and power system problems, Linear Algebra Appl., 431 (2009), pp. 318–333. · Zbl 1185.93010
[32] A. J. van der Schaft, Port-Hamiltonian systems: An introductory survey, in Proceedings of the International Congress of Mathematicians, Vol. III, J. V. M. Sanz-Sole and J. Verdura, eds., Madrid, Spain, (2006), pp. 1339–1365. · Zbl 1108.93012
[33] A. J. van der Schaft, Port-Hamiltonian systems: Network modeling and control of nonlinear physical systems, in Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures 444, Springer, New York, 2004, pp. 127–167.
[34] A. J. van der Schaft, Port-Hamiltonian differential-algebraic systems, in Surveys in Differential-Algebraic Equations, Springer, Berlin, 2013, pp. 173–226. · Zbl 1275.34002
[35] A. J. van der Schaft and B. M. Maschke, The Hamiltonian formulation of energy conserving physical systems with external ports, Arch. Elektron. Übertragungstech., 45 (1995), pp. 362–371.
[36] A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, J. Geom. Phys., 42 (2002), pp. 166–194. · Zbl 1012.70019
[37] A. J. van der Schaft and B. M. Maschke, Port-Hamiltonian systems on graphs, SIAM J. Control Optim., 51 (2013), pp. 906–937. · Zbl 1268.05099
[38] W. Schiehlen, Multibody Systems Handbook, Springer, Heidelberg, 1990. · Zbl 0703.70002
[39] J.-G. Sun, Backward perturbation analysis of certain characteristic subspaces, Numer. Math., 65 (1993), pp. 357–382. · Zbl 0791.65023
[40] G. Trenkler, Matrices which take a given vector into a given vector-revisited, Amer. Math. Monthly, 111 (2004), pp. 50–52. · Zbl 1047.15003
[41] C. Van Loan, How near is a matrix to an unstable matrix?, Contemp. Math. AMS, 47 (1984), pp. 465–479.
[42] K. Veselić, Damped oscillations of linear systems: A mathematical introduction, Springer, Heidelberg, 2011.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.