Darboux transformation and analytic solutions of the discrete \(\mathcal{PT}\)-symmetric nonlocal nonlinear Schrödinger equation. (English) Zbl 1351.35195

Summary: In this letter, for the discrete parity-time-symmetric nonlocal nonlinear Schrödinger equation, we construct the Darboux transformation, which provides an algebraic iterative algorithm to obtain a series of analytic solutions from a known one. To illustrate, the breathing-soliton solutions, periodic-wave solutions and localized rational soliton solutions are derived with the zero and plane-wave solutions as the seeds. The properties of those solutions are also discussed, and particularly the asymptotic analysis reveals all possible cases of the interaction between the discrete rational dark and antidark solitons.


35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35B40 Asymptotic behavior of solutions to PDEs
35B10 Periodic solutions to PDEs
Full Text: DOI arXiv


[1] Bender, C. M.; Boettcher, S., Phys. Rev. Lett., 80, 5243, (1998)
[2] Musslimani, Z. H.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N., Phys. Rev. Lett., 100, (2008)
[3] Longhi, S., Phys. Rev. Lett., 103, (2009)
[4] Markum, H.; Pullirsch, R.; Wettig, T., Phys. Rev. Lett., 83, 484, (1999)
[5] Cartarius, H.; Wunner, G., Phys. Rev. A, 86, (2012)
[6] Ablowitz, M. J.; Musslimani, Z. H., Phys. Rev. Lett., 110, (2013)
[7] Sarma, A. K.; Miri, M. A.; Musslimani, Z. H.; Christodoulides, D. N., Phys. Rev. E, 89, (2014)
[8] Khare, A.; Saxena, A., J. Math. Phys., 56, (2015)
[9] Li, M.; Xu, T., Phys. Rev. E, 91, (2015)
[10] Xu, T.; Li, M.
[11] Gupta, S. K.; Sarma, A. K., Commun. Nonlinear Sci. Numer. Simul., 36, 141, (2016)
[12] Yan, Z., Appl. Math. Lett., 47, 61, (2015)
[13] Fokas, A. S., Nonlinearity, 29, 319, (2016)
[14] Ablowitz, M. J.; Musslimani, Z. H., Phys. Rev. E, 90, (2014)
[15] Wang, D. S.; Wei, X. Q.; Wang, L.; Geng, C.; Zhang, L. L.; Zhao, Y. C., Appl. Math. Lett., Europhys. Lett. EPL, 108, 50009, (2014)
[16] Guo, R.; Liu, Y. F.; Hao, H. Q.; Qi, F. H.; Zhao, L. C.; Liu, J.; Ling, L. M.; Guo, B. L.; Zhao, L. C., Nonlinear Dynam., Phys. Rev. E, Phys. Rev. E, 89, 1221, (2014)
[17] Ma, L. Y.; Zhu, Z. N., Appl. Math. Lett., 59, 115, (2016)
[18] Ohta, Y.; Yang, J. K., J. Phys. A, 47, 25520, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.