×

Convergence of rays with rational argument in hyperbolic components – an illustration in transcendental dynamics. (English) Zbl 1351.37188

This paper is suggested by the work of A. Douady and J. H. Hubbard [C. R. Acad. Sci., Paris, Sér. I 294, 123–125 (1982; Zbl 0483.30014)] for the ray landing for quadratic family of complex dynamical systems. Here the author takes the following transcendental dynamical system \[ f_a(z) = a(e^z(z-1)+1), \qquad a\in {\mathbb C}^*. \] It is proved that every rational internal ray of the family will land at a boundary point of the main hyperbolic component. Moreover, the landing point is either a parabolic, a repelling, or a Misiurewicz parameter.
Compared with the quadratic family, the following two facts are remarkable. The first is that, due to the existence of the finite preimage of the the asymptotic value of \(f_a\), the second case for landing points is new. The second is that the proof is based on the Caratheodory topology concerning with the convergence of sequences of marked domains. Because of these, this is an interesting and important paper.

MSC:

37F15 Expanding holomorphic maps; hyperbolicity; structural stability of holomorphic dynamical systems
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F45 Holomorphic families of dynamical systems; the Mandelbrot set; bifurcations (MSC2010)
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable

Citations:

Zbl 0483.30014
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barański K 2007 Trees and hairs for some hyperbolic entire maps of finite order Math. Z.257 33–59 · Zbl 1136.37024
[2] Barański K, Jarque X and Rempe L 2012 Brushing the hairs of transcendental entire functions Topol. Appl.159 2102–14 · Zbl 1267.37041
[3] Beardon A F and Minda D 2007 The hyperbolic metric and geometric function theory Quasiconformal Mappings and Their Applications ed S Ponnusamy et al (New Delhi: Narosa Publishing House)
[4] Berenguel R and Fagella N 2010 An entire transcendental family with a persistent Siegel disc J. Differ. Equ. Appl.16 523–53 · Zbl 1198.30026
[5] Branner B and Hubbard J H 1988 The iteration of cubic polynomials part I: the global topology of parameter space Acta Math.160 143–206 · Zbl 0668.30008
[6] Branner B and Hubbard J H 1992 The iteration of cubic polynomials. Part II: patterns and parapatterns Acta Math.169 229–325 · Zbl 0812.30008
[7] Carathéodory C 1912 Untersuchungen über die konformen abbildungen von festen und veränderlichen gebieten Math. Ann.72 107–44
[8] Carathéodory C 1998 Conformal Representation 2nd edn (New York: Dover) · JFM 58.0354.14
[9] Douady A 1994 Does a Julia set depend continuously on the polynomial? Complex Dynamical Systems: the Mathematics Behind the Mandelbrot and Julia Sets(Proc. of Symp. in Applied Mathematics vol 49) ed R L Devaney (Providence, RI: American Mathematical Society) pp 91–138
[10] Douady A and Hubbard J H 1982 Itération des polynômes quadratiques complexes C. R. Acad. Sci. Paris Sér. I Math294 123–6
[11] Douady A and Hubbard J H 1985 On the dynamics of polynomial-like mappings Ann. Sci. École Norm. Sup.18 287–343 · Zbl 0587.30028
[12] Eremenko A and Lyubich M Yu 1992 Dynamical properties of some classes of entire functions Ann. Inst. Fourier42 989–1020 · Zbl 0735.58031
[13] Fagella N 1995 Limiting dynamics for the complex standard family Int. J. Bifurcation Chaos Appl. Sci. Eng.5 673–99 · Zbl 0885.58069
[14] Fagella N and Garijo A 2003 Capture zones of the family of functions Int. J. Bifurcation Chaos Appl. Sci. Eng.13 2623–40 · Zbl 1052.37038
[15] Fagella N and Garijo A 2007 The parameter planes of for Commun. Math. Phys.273 755–83 · Zbl 1146.37031
[16] Garijo A 2000 Iteration of certain families of transcendental maps and phase portraits of complex differential equations PhD Thesis University of Barcelona
[17] Garijo A, Jarque X and Rocha M M 2011 Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps Fundam. Math.214 135–60 · Zbl 1245.37009
[18] Geyer L 2001 Siegel discs, Herman rings and the Arnold family Trans. Am. Math. Soc.353 3661–83 · Zbl 0980.30017
[19] Hubbard J H and Schleicher D 1994 The spider algorithm Complex Dynamical Systems: the Mathematics Behind the Mandelbrot and Julia Sets(Proc. of Symp. in Applied Mathematics vol 49) ed R L Devaney (Providence, RI: American Mathematical Society) pp 155–80
[20] McMullen C 2000 The mandelbrot set is universal The Mandelbrot Set, Theme and Variations vol 274 ed T Lei (Cambridge: Cambridge University) pp 1–18 · Zbl 1062.37042
[21] McMullen C T 1994 Complex Dynamics and Renormalization(Annals of Mathematics Studies) (Princeton, NJ: Princeton University)
[22] McMullen C T 1996 Renormalization and 3-Manifolds which Fiber over the Circle(Annals of Mathematics Studies) (Princeton, NJ: Princeton University) · Zbl 0860.58002
[23] Milnor J 2000 Periodic orbits, externals rays–and the Mandelbrot set–an expository account Géométrie Complexe et Systèmes Dynamiques–Colloque en l’honneur d’Adrien Douady–Orsay 1995 vol 261 ed M Flexor et al (Paris: Société Mathématique de France) pp 277–333
[24] Milnor J 2006 Dynamics in One Complex Variable(Annals of Mathematics Studies) 3rd edn (Princeton, NJ: Princeton University)
[25] Milnor J 2009 Cubic polynomial maps with periodic critical orbit, part I Complex Dynamics, Families and Friends ed D Schleicher (Wellesley, MA: CRC Press) pp 333–411 · Zbl 1180.37073
[26] Morosawa S 1999 Local connectedness of Julia sets for transcendental entire functions Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis ed W Takahashi and T Tanaka (Singapore: World Scientific) pp 266–73
[27] Petersen C L 1998 Convergence in parameter spaces manuscript
[28] Petersen C L and Lei T 2009 Analytic coordinates recording cubic dynamics Complex Dynamics, Families and Friends ed D Schleicher (Wellesley, MA: CRC) pp 413–50
[29] Petersen C L and Ryd G 2000 Convergence of rational rays in parameter spaces The Mandelbrot Set–Theme and Variations(London Mathematical Society Lecture Note Series vol 274) ed T Lei (Cambridge: Cambridge University) pp 161–72 · Zbl 1062.37038
[30] Pommerenke C 1975 Univalent Functions(Studia Mathematica) (Göttingen: Vanderhoeck and Ruprecht)
[31] Roesch P 2007 Hyperbolic components of polynomials with a fixed critical point of maximal order Ann. Sci. École Norm. Sup.40 901–49 · Zbl 1151.37044
[32] Schleicher D 2000 Rational parameter rays of the mandelbrot set Géométrie Complexe et Systèmes Dynamiques–Colloque en l’honneur d’Adrien Douady,–Orsay 1995 vol 261 ed M Flexor et al (Paris: Société Mathématique de France) pp 405–43
[33] Shishikura M 2000 Bifurcation of parabolic fixed points The Mandelbrot Set, Theme and Variations(London Mathematical Society Lecture Note Series vol 274) ed T Lei (Cambridge: Cambridge University) pp 325–64 · Zbl 1062.37043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.